Zhen Chen

Contact Information	Department of Computer Science, The University of T 2317 Speedway, Stop D9500 Austin, Texas 78712, USA	èxas at Austin 737-230-9435 zchen96@utexas.edu https://zhenchen-jay.github.io/	
Research interests	My current research focuses on investigating the physical characteristics and geomet- ric properties of thin shell models. I aim to develop efficient and precise models for simulating cloth behavior. Additionally, I have a keen interest in the realm of real- time gaming mesh processing, encompassing tasks such as remeshing, repairing, and simplification. Furthermore, I find the prospect of enhancing results through the in- tegration of mesh processing, physical simulations, and deep neural networks to be particularly intriguing.		
Education	The University of Texas at Austin Ph.D. in Computer Science	Austin, Texas 2018 – Present	
	Supervisor: Prof. Etienne Vouga University of Science and Technology of China Bachelor in Mathematics Mentors: Prof. Ligang Liu	Anhui, China 2014 – 2018	
Publications	Etienne Vouga. Complex Wrin- 2023 (SIGGRAPH 2023).		
	[2] Zhen Chen , Zherong Pan, Kui Wu, Etienne Vouga, Xifeng Gao. Robust Low-Meshing for General 3D Models . <i>ACM Transcations on Graphics, 2023 (SIGG. 2023)</i> .		
	[3] Yan Zheng, Lemeng Wu, Xingchao Liu, Zhen Chen , Qiang Liu, Qixing Huang. Neural Volumetric Mesh Generator . <i>NeurIPS 2022 Workshop SBM Poster, 2022</i> .		
	[4] Zhen Chen, Hsiao-yu Chen, Danny M. Kaufman, Mélina Skouras, Etienne Vouga. Fine Wrinkling on Coarsely-Meshed Thin Shells. ACM Transcations on Graphics, 2021.		
	[5] Zhen Chen , Daniele Panozzo, Jeremie Dumas. Half-Space Power Diagrams and Discrete Surface Offsets . <i>IEEE Transaction on Visualization and Computer Graphics, 2019.</i>		
Research Experience	Research Intern, LightSpeed Studios Mentor: Xifeng Gao	Bellevue, US Summer 2023	

Project description: Develop a robust and efficient algorithm for approxim				
	convex decomposition of diverse 3D meshes. Our object	ctive is to elevate collision de-		
	tection performance in real-time gaming scenarios.			
	Research Intern, LightSpeed Studios	Bellevue, US		
	Mentor: Xifeng Gao	Summer 2022		
	Project description: Propose a remeshing algorithm designed to accurately capture			
	sharp features, ensuring both the absence of intersections and water-tight integrity.			
	Implement this methodology on real-world mesh data t	o showcase its practical appli-		
	cability.			
	Research Assistant	UT Austin		
	Supervisor: Etienne Vouga	Fall 2022		
	Project description: Propose Neural Volumetric Mesh Generator (NVMG), a novel ap-			
	proach aimed at producing high-quality volumetric mes	shes for soft-body simulation.		
	Research Assistant	UT Austin		
	Supervisor: Etienne Vouga	Fall 2021 - Fall 2022		
	Project description: Propose a wrinkle representation to	capture detailed wrinkles on a		
	coarse underline mesh, and introduce the corresponding efficient algorithms for wrin-			
	kle editing, design, and interpolation.			
	Research Intern. Adobe	Remote in Austin, US		
	Mentor: Danny M. Kaufman	Summer 2021		
	Project description: Design a time integrator which ach	nieves a trade-off between am-		
	plitude distortion (dissipation) and period distortion (dispersion). This is spec			
	designed for the incremental potential contact (IPC) mo	del.		
	Student Intern. Geometric Computing Lab	NYU		
	Host: Daniele Panozzo	Summer 2017		
	Project description: Investigate an algorithm for the rol	oust and efficient computation		
	half-space power diagrams to			
	achieve accurate results	mai space power diagrams to		
	achieve accurate results.			
TALKS	Complex Wrinkle Field Evolution			
IALKS		2023		
	Bobust Low Poly Mashing for Conoral 2D Modela	2023		
	SICCDADE	2022		
	SIGGRAPH	2023		
	Fine wrinking on Coarsely-Mesned Inin Snells	2022		
	SIGGRAPH			
	Half-Space Power Diagrams and Discrete Surface (Diffsets (with Jeremie Dumas)		
	Symposium on Geometry Processing (SGP)	2020		
Reviews	Furgeraphics	2022 2024		
	Computer Graphics Forum	2022, 2024		
	SIGGRAPH	2022		
	515 GIULIII			

TEACHING	Teaching assistant, Department of Computer Science	UT Austin
Experience	CS 303E: Elements of Computers and Programming	Fall 2018
	Teaching assistant, Department of Mathematics	USTC
	Complex Analysis Fall	Fall 2017
	Mathematical Analysis	Spring 2017
Honors and	Baosteel ScholarShip(Top 2%)	2017
Awards	National Scholarship (Top 1% nationwide)	2016
	Outstanding Freshman Scholarship (Top 1%)	2014
LANGUAGE	Programming: C/C++, Python, Matlab	
AND SKILLS	Software: Houdini, Adobe Premiere	
	Language: Chinese(native), English(fluent)	