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Abstract

Complex Wrinkle Simulation and Robust Surface Remeshing

Zhen Chen, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Dr. Etienne Vouga

The accurate simulation of intricate wrinkles is essential in computer graphics,

particularly for creating efficient and realistic animations. In this field, surfaces are

typically represented by triangle meshes. Nonetheless, this methodology encounters

significant obstacles in accurately depicting fine details like cloth wrinkles: meshes

must be of high resolution. This requirement, in turn, results in a decreased compu-

tation speed owing to the increased degrees of freedom.

In this study, we introduce a novel method for simulating wrinkles on coarse

meshes, complemented by a robust algorithm for transforming high-resolution inputs

into these optimized meshes. Our technique leverages a spectral representation of

wrinkles, encoding them in terms of amplitude and phase within the frequency do-

main. This approach effectively surmounts the limitations of conventional Finite Ele-

ment Methods (FEM). Typically, these methods struggle to maintain high-frequency

details on coarse meshes, or they require an extremely high-resolution mesh to cap-

ture such details, resulting in decreased solving speed. Our method not only enables

the generation of lifelike wrinkle animations but also allows for the customization of

wrinkle patterns, including the design and modification of wrinkles.

We first propose a novel wrinkle model that adeptly captures complex, high-

frequency wrinkles on coarse meshes, overcoming the resolution constraints of tradi-
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tional Finite Element Method frameworks. This model is then extended to facilitate

the animation of detailed wrinkle dynamics, including the progression of singulari-

ties. Moreover, we introduce an advanced remeshing technique that seamlessly con-

verts high-polygon models—common in natural environments—into visually equiva-

lent low-polygon meshes. This technique proves invaluable not only for preprocessing

to generate coarse meshes suitable for our wrinkle simulation approach but also for

creating models with multiple levels of detail (LOD), a technique widely utilized in

the gaming industry.
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Chapter 1: Introduction

Wrinkles are a prevalent phenomenon in everyday life, and understanding their

geometry and simulating their deformation have been extensively studied in the field

of computer graphics. In a discrete setting, a wrinkle surface is typically represented

by piecewise linear elements, such as triangular meshes, where each vertex on the

mesh is sampled from the original smooth surface. Numerous methods have been

developed for wrinkle simulation based on this discretization. However, traditional

finite element method (FEM) systems often struggle with inadequate mesh resolu-

tion for accurately representing high-frequency wrinkles. Thus, further exploration is

necessary to generate and simulate high-frequency wrinkles effectively.

This thesis investigates recent trends in wrinkle simulation to propose an in-

novative approach for representing and animating physically plausible wrinkles on

coarse geometry. The primary objective is to reduce the degrees of freedom and

develop an efficient solver for enhanced performance.

In Chapter 2, we introduce an innovative model and algorithm to capture

the high-frequency details of thin shells on coarse meshes, effectively overcoming the

resolution constraints encountered in conventional Finite Element Method (FEM)

frameworks. Our approach is capable of predicting global, fine-scale wrinkling at

frequencies much higher than what the mesh resolution can typically accommodate.

It is based on the geometric analysis of elasticity and operates without the need for

manual guidance, a corpus of training examples, or the adjustment of ad-hoc parame-

ters. Firstly, we approximate the basic form of the shell utilizing tension field theory,

where the material is considered to not resist compression. Subsequently, we enhance

this base mesh with wrinkle details, parameterized by an amplitude and phase field

solved across the base mesh, collectively defining the wrinkle geometry. Our method

is validated through comparisons with both physical experiments and numerical sim-

ulations, demonstrating that our algorithm can generate wrinkle patterns remarkably
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similar to those produced by traditional shell solvers, but with significantly fewer

degrees of freedom.

In Chapter 3, we further extend our wrinkle representation to include the

intricate dynamics of wrinkle animation—such as rotation, merging, and disappear-

ing—via a concept termed Complex Wrinkle Fields (CWF ). This approach utilizes

a complex-valued phase function that is almost everywhere-unit across the surface,

a frequency one-form, and an amplitude scalar, with a soft compatibility condition

that coordinates the frequency and phase. We further propose algorithms for inter-

polating between two such wrinkle fields, for rendering them as displacements on a

refined mesh obtained through Loop subdivision, and for making smooth, localized

adjustments to the wrinkle’s amplitude, frequency, and direction. These algorithms,

for the first time, facilitate the creation and editing of wrinkle animations on triangle

meshes that are smooth in space, evolve coherently through time, include singulari-

ties along with their complex interactions, and that represent details at frequencies

significantly finer than the surface resolution.

In Chapter 4, we introduce a novel algorithm designed to generate a low-

resolution version of real-world mesh data, while simultaneously repairing its topo-

logical and geometric flaws, including non-manifoldness and self-intersections. This

method not only serves as the initial step for the wrinkle models proposed in pre-

vious chapters, by providing a reliable coarse mesh but also enables the creation of

meshes at multiple levels of detail (LOD). These LOD models facilitate rendering

for an approximated view, crucial for achieving a real-time gaming experience, par-

ticularly on low-end devices. Furthermore, real-world mesh data frequently exhibit

complex topologies and geometries that present obstacles for further processes like

surface parameterization and manipulation. Our method effectively addresses these

complexities by rectifying the topological and geometric artifacts.
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Chapter 2: Fine Wrinkling on Coarsely Meshed

Thin Shells1

(a) Tension field base mesh (b) Amplitude and phase field (c) Recovered wrinkled shape (front and back)

Figure 2.1: Overview of our pipeline for predicting the wrinkled equilibrium shape
of a thin shell (in this case, a cloth dress draped on a mannequin). We approximate
the coarse shape of the draped cloth using tension field theory (a), in which material
forces do not resist compression. We then augment this base mesh, which can be very
coarse (around one thousand vertices), with wrinkles. We formulate the elastic energy
of the shell in terms of an amplitude (b, top) and phase field (b, bottom) over the
base mesh, which together characterize the geometry of the wrinkles, and solve for
these fields globally over the mesh. Our method recovers complex wrinkle patterns
with nontrivial geometry and topology (c), including wrinkles with wavelength much
smaller than the resolution of the base mesh.

We propose a new model and algorithm to capture the high-definition statics

of thin shells via coarse meshes. This model predicts global, fine-scale wrinkling at fre-

quencies much higher than the resolution of the coarse mesh; moreover, it is grounded

in the geometric analysis of elasticity, and does not require manual guidance, a cor-

pus of training examples, nor tuning of ad-hoc parameters. We first approximate

the coarse shape of the shell using tension field theory, in which material forces do

1This chapter is modified from Chen et al. (2021b). For more details, please refer this webpage
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not resist compression. We then augment this base mesh with wrinkles, parameter-

ized by an amplitude and phase field that we solve for over the base mesh, which

together characterize the geometry of the wrinkles. We validate our approach against

both physical experiments and numerical simulations, and show that our algorithm

produces wrinkles qualitatively similar to those predicted by traditional shell solvers

requiring orders of magnitude more degrees of freedom.

2.1 Introduction

Complex and high-frequency wrinkling patterns give thin-sheet and membrane

materials, like cloth and plastic film, their characteristic fine details. Yet the rich

diversity of wrinkling behaviors observable in these everyday materials also pose a

significant modeling and simulation challenge: failure to represent the material using

sufficient degrees of freedom to adequately sample the surface’s highest-frequency

wrinkle features leads to noisy, aliased results, or else overly-smoothed surfaces whose

fine wrinkles are missing altogether. Thus computational meshes with hundreds of

thousands of vertices can be required in computer animation or garment modeling

applications in order to capture accurate and/or expressive wrinkles.

Towards the efficient and accurate simulation of wrinkling we propose a new

model and algorithm to capture the high-definition statics of thin shells via coarse

meshes. Our goal is to model the complex and fine wrinkles that arise in the interplay

between tension and compression while utilizing just a small number of degrees of

freedom. For example, in the dress shown in Figure 2.16 we simulate with 1.4k

degrees of freedom (compare to a full resolution simulation result using 40k vertices in

Figure 2.16). The key idea of our approach is to split the kinematics of wrinkled shells

into a base mesh, representing the coarse envelope of the shell without its fine wrinkles,

and a wrinkle field parameterized over the base mesh, encoding the amplitude and

wavelength of high-frequency wrinkles. In the first half of this chapter, we formulate

a reduced-order model of shell statics in terms of these degrees of freedom. In the
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second, we propose a concrete algorithm for computing the wrinkled static shape

of tension-dominated thin materials, such as draped garments or inflated balloons,

based on the choice of tension field theory for computing the base mesh shape.

Our model predicts global, fine-scale wrinkling at frequencies much higher than

the resolution of the base mesh and, in contrast to previous heuristic approaches for

wrinkle augmentation, is grounded in the geometric analysis of elasticity, and does

not require manual guidance, a corpus of training examples, nor tuning of ad-hoc pa-

rameters. We validate our approach against both physical experiments and numerical

simulations, show that our algorithm generates both well-known experimental results

and simulations with wrinkle quality comparable to those obtained by classical cloth

solvers utilizing orders of magnitude more degrees of freedom.

Wrinkle Fields Augmenting a coarse simulation with additional high-frequency de-

tail, via techniques such as normal or displacement mapping (either crafted by artists

or learned from data Lähner et al. (2018a)), is a long-standing and powerful strategy.

We adopt the approach of several prior works in physics and computer graphics which

parameterize wrinkles as spatially-varying amplitude and phase fields. To solve for

these wrinkle fields and add fine wrinkles to a base mesh, previous methods explore

several ideas based on local analyses of its deformation, either by assuming that the

base mesh has a very simple geometry, so that wrinkle behavior can be predicted

analytically; by restricting to materials like skin where a volumetric substrate drives

local wrinkling; or by procedurally modeling wrinkles based on heuristics, user guid-

ance, or data-driven models. While such local models can capture the wrinkling of

pinched skin or tight-fitting spandex, where the wrinkle frequency and amplitude are

indeed determined by local rather than long-range interactions, they are inapplicable

to loose-fitting clothing or draped cloth. In contrast, we develop a principled global

model of wrinkle fields, grounded in the physics of thin shells.
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Problem Scope. We apply our reduced-order wrinkle model to the problem of

simulating the static shape of thin shells under a mix of tension and compression,

subject to boundary conditions. Here we focus exclusively on this statics problem

with potential applications to virtual try-on, garment design, draping, and modeling.

We do not consider dynamics, although see Section 2.7 for discussion of how the

theory we develop might be applied to dynamics. We solve the statics problem by

first computing the base mesh shape, and then solving for the wrinkle orientation,

frequency, and amplitude.

(a) Coarse elastic simulation (b) Corresponding TFW result (c) Tension field simulation (d) Corresponding TFW result

Figure 2.2: Augmenting a coarse elastic simulation (a) and tension-field simulation
(c) of a dress with wrinkles. Note that using a coarse elastic simulation yields poor
results: since a coarse mesh cannot represent fine wrinkling, the simulation produces
an aliased result with incorrect, coarse wrinkling instead. Adding additional high-
frequency wrinkles to this base mesh is not useful. Instead, we propose using a
tension-field simulation of the shell as the base mesh; the TFT solution is devoid
of wrinkles, and becomes a blank canvas on which we can solve for a high-quality
wrinkle field.

Choice of Base Mesh Although a coarse-resolution simulation of the shell may

be the most obvious choice of base mesh, this choice is flawed (see Figure 2.2). If a

shell would wrinkle at a frequency higher than can be resolved by the tessellation,

the coarse-resolution simulated shell will buckle, but at an aliased frequency much

coarser than the physically-correct wrinkle features. Augmenting such a base mesh
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with plausible wrinkles would thus require both removing the existing, spurious coarse

buckling, and then inserting new high-frequency wrinkles. Instead, we propose com-

puting a base mesh free of any wrinkles using tension field theory (TFT ); this TFT

base mesh then serves as a blank canvas upon which we can optimize for a wrinkle

field encoding fine details at the correct frequency and amplitude.

Tension Field Theory The key insight of tension field theory Pipkin (1986);

Steigmann (1990) is that tension-dominated thin shell deformation can be understood

at two independent scales: the coarse structure and the fine wrinkles. Consider, for

instance, manipulating a piece of cloth: the cloth strongly resists extension, but allows

compression with almost no resistance. When compressed, the cloth buckles into a

wrinkled shape, at very low energy cost since the bending stiffness of real materials

is orders of magnitude weaker than the stretching stiffness. The dominant forces de-

termining the coarse structure of cloth that is being tugged or draped are therefore

internal tension forces, gravity and other external loads, and bending; the internal

compression forces and the buckling and wrinkling they induce play a negligible role

in the cloth’s overall shape.

Despite their relative unimportance in determining coarse shape, compression

forces are the chief source of numerical difficulty when simulating shell statics. Not

only does resolving the wrinkles induced by compression require finely-tessellated

elements, but the elastic energy of compression is non-convex (since there is symmetry

in whether a small, compressed strip of cloth will buckle upwards or downwards;

there is also phase-shift symmetry in the wrinkle pattern on a larger cloth patch).

In cases where simulating detailed wrinkling is not required, such as when designing

inflatable balloons Skouras et al. (2014), there has been great profit in neglecting

the compressive forces altogether: the resulting TFT simulation minimizes a convex

elastic energy which accurately predicts a surface’s coarse-scale shape even when

the simulation mesh has few degrees of freedom. For tension-dominated problems,

such as simulating cloth drapes or deformation of pressurized chambers, TFT is thus
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ideal for generating an approximate coarse base mesh for applying our wrinkle fields

(constructed in Section 2.3).

Contributions To summarize, our core contributions include:

• a new formulation of thin shell kinematics that splits degrees of freedom between

coarse-scale deformation of the surface, and high-frequency wrinkling, expressed

as functions on the coarse surface. We derive an energy model for the shell in

terms of these degrees of freedom (Section 2.3);

• we propose an algorithm which uses the above energy model to solve for the

static shape of cloth and other thin materials, when subject to loads that induce

a mix of tension and compression (Section 2.4). At its heart, this algorithm first

solves for the coarse shape using TFT simulation, and then, given the coarse

mesh, solves a sequence of quadratic programs to compute the wrinkle field

parameters;

• we evaluate our model and algorithm on a variety of test cases, including experi-

ments drawn from the physics literature, and simulations of garment drapes and

inflatable structures (Section 2.6). We show qualitative agreement between our

results and those of both established experiments and full degree-of-freedom

shell solvers, even when our method is discretized very coarsely, e.g., using

≈ 1000 degrees of freedom; and

• although low-level performance optimization is not our focus here, we show

that our method’s advantage of working on much coarser meshes translates into

speedups (up to one or two orders of magnitude) when compared to a baseline,

optimized Newton-type solver for shell statics (Section 2.6).

We find that coarse base meshes, together with wrinkle fields, are a powerful

representation for simulating cloth and other thin materials with complex, highly-

detailed, high-frequency wrinkle-like features, and yield striking results in comparison
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to simulations using classic bending and stretching elements. We hope our model

will serve as a foundation for further research into simulation using wrinkle-field

kinematics, not only for forward problems, but also for inverse design problems, where

the wrinkle amplitude and direction are more natural and semantically meaningful

deformation degrees of freedom than traditional vertex displacements.

2.2 Related Work

Thin shell simulation has long been a research focus in both computational

mechanics and computer graphics. Considerable effort has focused on improving

computational efficiency of generic cloth and shell solvers. This work was pioneered

by Baraff and Witkin (1998)’s application of implicit time integration to acceler-

ate cloth simulation. Subsequent research proposes many improvements including

implicit-explicit methods Boxerman and Ascher (2004), adaptive remeshing Narain

et al. (2012b, 2013); Li et al. (2018); Grinspun et al. (2002), distributed memory par-

allelism Selle et al. (2009), position-based dynamics Müller et al. (2007), subdivision

thin shell element methods Vetter et al. (2014), multi-grid methods Tamstorf et al.

(2015), and various approaches to incorporating yarn-level dynamics Kaldor et al.

(2008), such as by homogenization Sperl et al. (2020) or enrichment of a triangle

mesh by yarn patches Casafranca et al. (2020).

Theoretical Analysis of Wrinkles The interplay of thin shell mechanics and

wrinkling has been significantly studied in the physics community. Cerda and Ma-

hadevan (2003) derive a scaling law that relates the wrinkle wavelength to the material

parameters of a stretched elastic thin sheet; this experiment was analyzed system-

atically in follow-on computational work Healey et al. (2013); Li and Healey (2016);

Wang et al. (2018). The Cerda and Mahadevan model was later extended to more

complex deformations and geometries Paulsen et al. (2016); Aharoni et al. (2017).

The work of Paulsen et al. (2016) is particularly notable as it accounts for the role
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of surface curvature on wrinkling: their extension can be used to predict the wave-

length of wrinkles on simple, rotationally-symmetric 3D geometries like cylinders and

hemispheres. However, their analysis assumes that the wrinkle direction is known

in advance and that wavelength is constant in this direction, which is not true for

everyday, complex geometries, for example in draped dresses or pants.

Physically-Inspired Wrinkle Simulation Given the importance of fine wrinkles

to the visual quality of cloth simulation, several methods have studied augmenting

simulations to better reproduce high-quality wrinkles, either by modifying the solve

itself, or adding wrinkles as a post-process. Bergou et al. (2007b) use constrained La-

grangian mechanics to force a high resolution simulation to track the coarse motion

of an art-directed low-resolution target surface, thereby enhancing the coarse motion

with fine-scale details. Rémillard and Kry (2013b) apply a similar idea to simulation

of skin, by using a sparse set of constraints to couple the motion of outer skin layers

to the underlying volumetric substrate. In a similar vein, Wrinkle Meshes Müller

and Chentanez (2010) computes fine wrinkles by simulating high-resolution patches

constrained to an initial, low-resolution simulation. Although both methods gener-

ate a high-resolution wrinkled surface whose coarse shape matches a coarse target,

these tracking-based methods still require simulating wrinkles on a high-resolution

mesh, in contrast to our approach based on coarse wrinkle-field kinematics. Sev-

eral post-processing methods have been proposed that add dynamic wrinkles based

on analyzing the strain tensor after a coarse-scale simulation Gillette et al. (2015b);

Rohmer et al. (2010); although real-time, these methods rely on user guidance to

choose the proper wrinkle size, rather than inferring the correct wrinkles from the

cloth physics.

Evgeny and Harders (2019) predict the wrinkling of human skin, and other

materials consisting of a stiff film coupled to a soft substrate. Similar to our approach,

Zuenko et al. solve for an amplitude and phase field discretized on a surface mesh.

Different from us, however, Zuenko et al. compute wrinkle frequency based on local
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phenomenological laws drawn from the physics literature that relate wrinkle frequency

to the film-to-substrate shear modulus ratio. Their method is thus only applicable to

wrinkled skin or spandex, and not to wrinkling of loose-fitting cloth and other shells

which are not bonded to any substrate.

In case of no substrate, one way to extend Zuenko et al.’s approach is to use

an ad-hoc value of film-to-substrate shear modulus ratio to control the wrinkle fre-

quency; this appears to be how Zuenko et al. simulated Figures 8a,b in their paper,

for instance (showing wrinkling on a toroidal balloon and a gold sheet draped on a

sphere). As in the techniques above that add dynamics as a postprocess, the down-

side of this idea is that one now needs to manually tune this parameter, rather than

allowing the physics to create the wrinkles automatically. As an alternative, for shells

with no substrate, Zuenko et al. also extended their approach by using the scaling

law of Vandeparre et al. (2011) instead of film-to-substrate shear modulus ratio to

determine wrinkle frequency. The main idea of Vandeparre et al. is to predict the

frequency of cloth wrinkles in the interior based on inward propagation from a nearby

compressed, clamped boundary. This scaling law gives good results for simulations

involving hanging curtains, or other problems where wrinkling is coming from com-

pression at a boundary (see for instance their Figure 8c). Note that in order to be

applicable, the Vandeparre et al. scaling law requires (1) that the wrinkling in the

interior of the cloth is explainable by wrinkles propagating inward from a nearby

boundary, and (2) that the wrinkles at the boundary are caused by compression and

clamping at that boundary. Wrinkles due to contact and draping (see the dress in Fig-

ure 2.16) in the cloth interior; or shearing of a boundary that is not compressed (for

instance, see our later experiments: the sheared rectangle, Figure 2.8, and twisted

cylinder, Figure 2.21); or strain in the interior that vanishes towards the clamped

boundary (like in Cerda and Mahadevan’s model problem of a stretched elastic sheet;

see Figure 2.5) violate the modeling assumptions of Vandeparre et al. See our com-

parison with the extended Zuenko et al.’s approach with Vandeparre’s law on the

stretched sheet and sheared rectangle examples in Figure 2.7 and 2.9 highlighting
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these issues.

Finally, there has been work on augmenting fluid simulation with high-frequency

wave packets Jeschke and Wojtan (2017); these wave packets are “wrinkles” of a sort,

but are governed by a very different physics than the shell elasticity considered in

this chapter.

Tension Field Theory. As discussed above in our introduction, TFT was success-

fully applied to the design of inflatable structures Skouras et al. (2014), and has been

used successfully to explain physical and biological phenomena such as the wrinkling

of scar tissue Cerda (2005) and the inflation of parachutes Baginski (2005). The con-

vexity of TFT was also exploited in order to optimize the design of skin-tight clothing

using sensitivity analysis Montes et al. (2020). Although not explicitly grounded in

tension field theory, several computer graphics techniques for simulating cloth Choi

and Ko (2002); Jin et al. (2017) adopt a similar idea of neglecting or significantly

weakening the elastic forces that resist compression. By reducing the likelihood that

small strains induce numerically-challenging out-of-plane buckling, these methods are

computationally efficient. Likewise weakening the compression forces offers other ad-

vantages as well, such as alleviation of membrane locking.

Data-Driven Approaches A final stream of research on efficiently augmenting

simulations with fine wrinkles uses data (gathered from the real world; e.g. via motion

capture Lähner et al. (2018a), or collected from offline high-resolution simulations) to

learn cloth deformation. To accelerate the latter idea, Kim et al. (2013) constructed

a compressible secondary cloth motion graph to sample the dynamic space and reduce

storage requirements by a factor of 1000. A common idea, especially useful for adding

fine details to T-shirts and other relatively skin-tight garments, is to condition the

learned deformation on the pose of an underlying mannequin Wang et al. (2010); Hahn

et al. (2014); Santesteban et al. (2019b). This idea can be further applied to transfer

of cloth motion from one body shape onto another Guan et al. (2012). Different from
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the pose-based methods, Kavan et al. (2011) and Seiler et al. (2012) learn a dense

upsampling operator to obtain more geometric details on a coarse simulated mesh,

and does not assume an underlying mannequin.

Although highly efficient, these methods suffer from the usual issues of data-

driven strategies: artifacts appear and quality degrades when the method is applied

to simulations that require extrapolation rather than interpolation of existing training

data. Methods conditioned on mannequin pose thus cannot be applied to free-floating,

environmental cloth.

2.3 Wrinkle Field Modeling

We model the kinematics of wrinkled thin shells in terms of a coarse base sur-

face, augmented by wrinkles parameterized by amplitude and phase fields over the

base surface. In this section, we discuss the mathematical details of these ideas. The

main result of our analysis is the formulation of the shell energy in Equation (2.27),

written in terms of the base surface and wrinkle-field degrees of freedom; a discretiza-

tion of this energy will form the basis of our algorithm in Section 2.4 for computing

the static shape of thin shells. Note that for the theory we develop in this section,

we do not assume any particular choice of base surface: later in Section 2.4.1 we will

discuss our proposed use of TFT simulation to compute the base surface. We then

cover discretization and implementation details in Section 2.5.

Throughout this section we apply tools and ideas from the physics literature on

the geometry of wrinkled sheets Aharoni et al. (2017); Cerda and Mahadevan (2003)

and simple curved membranes Paulsen et al. (2016). However, to our knowledge, the

general analysis of wrinkle shape and energy on curved shells that we perform here,

and the resulting formulas in Equation (2.19) and (2.27), are novel.
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2.3.1 Preliminaries

We begin with conventions and notation. We assume that we are modeling a

hyperelastic shell of fixed thickness h, and adopt the usual Kirchhoff-Love assump-

tion Ciarlet (2000) that the shell’s 3D volume is formed by extruding a midsurface

r(u, v) : U → R3 a distance h/2 in both directions along the midsurface normal

n̂(u, v), where U is a planar parameter domain. For simplicity we assume a St.

Venant-Kirchhoff linear constitutive model2, in which case it can be shown (see e.g.

Weischedel (2012)) that the elastic energy of the shell, as a function of the midsurface

embedding r, is given by the Koiter energy

E =

∫
U

(
h

4
Ws +

h3

12
Wb

)√
det Iu dudv, (2.1)

Ws =
∥∥I−1

u I − id
∥∥2
SV

(2.2)

Wb =
∥∥I−1

u (II − IIu)
∥∥2
SV

(2.3)

where Ws and Wb are stretching and bending energy densities, I and II are the mid-

surface first and second fundamental forms, respectively, expressed as 2× 2 matrices

in the parameter coordinates. The tensors Iu and IIu are “rest” fundamental forms

encoding the strain-free shell configuration. In the case where the shell is rest-flat

and the domain U represents the shell’s strain-free shape, Iu = id (the identity ma-

trix) and IIu = 0. All of our examples are rest-flat, though we will include the rest

fundamental forms in the expressions we derive in this section, so that our results

extend seamlessly to shells with rest curvature. The norm ∥·∥SV is a quadratic form

depending on the material Lamé parameters α and β:

∥M∥2SV =
α

2
tr2(M) + β tr(M2). (2.4)

See Appendix A.1 for a more detailed overview of shell theory. Following foundational

work in the physics community on wrinkling of sheets Aharoni et al. (2017), our

2A linear constitutive model is justified for analyzing the energy of wrinkles, since we expect the
residual compressive strain in the wrinkled region (after buckling) to be small. We discuss extending
our analysis to other hyperelastic materials in Section 2.7.
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fundamental modeling assumption is that the shell midsurface can be decomposed

into

r(u, v) = rb(u, v) + rw(u, v), (2.5)

where rb is a low-frequency base surface, from which the shell midsurface is con-

structed by applying a high-frequency wrinkle correction rw. This wrinkle correction

can have components in both the normal and tangential directions to the base sur-

face. That is, consider a local frame formed by
{

∂rb
∂u
, ∂rb

∂v
, n̂b

}
at a point on the base

surface. The wrinkled shell rw(u, v) can be expressed as:

rw(u, v) = f1(u, v)
∂rb
∂u

(u, v) + f2(u, v)
∂rb
∂v

(u, v) + f3(u, v)n̂b(u, v)

= drb(u, v) vt(u, v) + f3(u, v)n̂b(u, v) (2.6)

where vt = (f1, f2) encodes the tangential displacement due to wrinkling, and

f3 the normal displacement. Note that vt is a vector field on the parameter domain

U , which the embedding Jacobian drb maps to a tangent vector on the base surface.

We will write Ib, IIb for the first and second fundamental forms of the base surface,

respectively.

Notice that we are working with three distinct surfaces, each with their own

geometry: the (2D) parameterization domain, the (3D) base surface, and the (3D)

wrinkled midsurface. We will use subscript u and b to denote quantities associated

with the parameterization domain and base surface respectively.

2.3.2 Wrinkle Correction from Wrinkle Fields

As in the analyses of Cerda and others Cerda and Mahadevan (2003); Aharoni

et al. (2017); Paulsen et al. (2016), we assume that the wrinkles in the shell have

wavelength that can vary spatially over the surface, but that at each point, the wrin-

kles have a single predominant wavelength and locally coherent wave direction and

amplitude. We can thus write the wrinkle correction in terms of the local geometry
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and deformation of the base surface, together with a non-negative amplitude and

periodic phase field

a(u, v) : U → R≥0, ϕ(u, v) : U → S1 ∼= [0, 2π).

In particular, we can write f3 explicitly in terms of amplitude and phase:

rw(u, v) = drb(u, v) vt(u, v) + a(u, v) cos[ϕ(u, v)] n̂b(u, v) (2.7)

with base surface normal n̂b, where our remaining task is to determine the in-plane

part vt of the wrinkle correction (which controls the wrinkle shape profile) as well as

the wrinkle amplitude and phase fields a and ϕ.

A first observation is that, to a good approximation, surfaces wrinkle in order

to compensate for surface area lost to compression. If the strain in the wrinkle

direction w is ϵw, we should expect the arclength of one wrinkle period to match

original material length of that period in the shell at rest:

ϵw ≈
a2

2
∥dϕ∥2

I−1
u
. (2.8)

This relationship coupling wave amplitude and frequency has been widely exploited,

in both physics and computer graphics Rohmer et al. (2010), but it does not tell us

the relative magnitude of a and dϕ. We observe that this tradeoff is usually globally

determined by the boundary conditions, strain, and curvature of the base surface.

For instance, if you take a rectangular sheet of paper and shear it by displacing its

four corners, the sheet will buckle and form a single, Ω-shaped bump. But if the

entire top and bottom boundaries of the sheet are clamped and the sheet is sheared,

a high-frequency pattern of wrinkles appears (see Figure 2.8). A second issue is

that dϕ must be integrable, i.e., it must be the derivative of some phase function

ϕ : U → S1 which is well-defined, at minimum, on the patches of U where a > 0. It

is therefore not possible to arbitrarily prescribe dϕ using Equation (2.8), even if the

wrinkle amplitude a could somehow be inferred.
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The punchline is that there is no general local rule for choosing a and dϕ,

without resorting to user guidance or ad-hoc heuristics. We must instead solve for

both terms globally over U .

2.3.3 Fast and Slow Variables

Before dealing with a and ϕ, we begin by analyzing the in-plane correction

unknown vt. A tempting idea, which we tried in early unsuccessful experiments, is

to solve for vt along with rb, a, and ϕ, as an additional kinematic degree of freedom.

To understand why this approach was misguided, consider that even if we assume no

in-plane wrinkle correction (vt = 0), the midsurface shape given by Equations (2.5)

and (2.7) is underdetermined. Wrinkles in the midsurface could be represented either

by

• adding wrinkles to the base surface rb, and setting a = 0;

• using a smooth base surface, but absorbing all midsurface undulation into the

amplitude a of the wrinkle field, while keeping ϕ = 0;

• using a smooth base surface, and a slowly-varying a, with the undulations of

the wrinkles induced by variations in the phase ϕ over the surface.

Thinking ahead to when we will want to discretize rb, a, and ϕ on a coarse mesh, it

is clear that only the third solution is acceptable, since it is the only one that will

not lead to aliasing of the fine wrinkles of r when rb, a, and ϕ are restricted to low

frequencies.

Carrying this idea further, we classify variables as slow or fast. Slow vari-

ables change at length scales larger than the wavelength of a single wrinkle, whereas

fast variables cannot be approximated as constant, even at the wrinkle scale. Fast

variables include ϕ, vt, and rb. We assume that the following variables are slow:
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• the base surface fundamental forms Ib and IIb; equivalently, the base surface

strain and curvature;

• wrinkle amplitude a;

• wrinkle frequency and orientation dϕ;

• the wrinkle shape profile, so that vt is a superposition of periodic vector fields

with slow direction and amplitude.

Notice that the wrinkle frequency dϕ is slow despite ϕ itself being fast, and that the

characterization of a as slow and ϕ as fast breaks the symmetry between a and ϕ

both controlling the wrinkle frequency. We will now derive closed-form expressions

for vt, based on an analysis of shell statics at the scale of a single wrinkle, baking our

assumptions about fast and slow variables into our wrinkle correction model.3

2.3.4 In-plane Wrinkle Correction Formulae

Since we assume that the wrinkle shape is a slow variable, ∥vt∥ must be a

periodic function of ϕ, at the scale of individual wrinkles. Moreover, we can assume

without loss of generality that there is no in-plane translation of the wave crests and

valleys: ∥vt∥|ϕ=0 = ∥vt∥|ϕ=π = 0, since any such translation could be accomplished

instead by a phase shift in ϕ. We thus approximate vt by the first couple of terms in

its discrete sine expansion,

vt ≈ v1 sinϕ+ v2 sin 2ϕ, (2.9)

with v1 and v2 slow vector fields on U .

3When deriving the elastic energy of the wrinkle field (Equation (2.19)), we will also assume
that the covariant derivative of wrinkle orientation is negligible. This assumption is justified by the
observation that, to good approximation, wrinkles align with the direction of principal tension in the
shell, and that these directions do not bend significantly within the material plane (since otherwise
the material could further deform to relax the tension).
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rb
v1 = v2 = 0

v1 = 0
r

Figure 2.3: 2D sketch of the effect that the two in-plane wrinkle correction modes v1

and v2 exert on the wrinkle shape, at small (left) and large (right) amplitudes. The
dotted black curve is the base surface. Purely normal wrinkle displacements (orange)
strain the surface significantly near where the wrinkles cross the base surface; the v2

in-plane displacement modifies the wrinkles into a more horseshoe-like shape which
equidistributes strain. The v1 term introduces asymmetry between wrinkles above
and below the base surface, allowing the wrinkle shape to adapt to curvature of the
base surface.

There are geometric reasons for expecting both of these terms to be important

(see Figure 2.3). Consider the case of perfectly sinusoidal wrinkles, where vt = 0.

These wrinkles induce large variations in strain in the shell over one wavelength, with

maximum strain at ϕ = π/2, 3π/2 and minimum strain at the wrinkle peaks and

valleys. The v2 term allows a redistribution of material within a wrinkle period to

equalize strain.

The v1 term accounts for strain variation over one wrinkle period, due to

curvature of the underlying base surface. Consider for instance a wrinkled cylinder,

where the wrinkling direction dϕ travels azimuthally around the cylinder (similar to

the wrinkles shown in Figure 2.4). Wrinkle peaks are more highly strained than wrin-

kle valleys, due to the base surface curvature, and the v1 term allows redistribution

of material within a wavelength to compensate. Neglecting v1 artificially penalizes

coarse wrinkles where the base surface is highly curved in the dϕ direction, and rela-

tively flat in the perpendicular direction (see also the discussion in Section 2.3.6).
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Finding v1 and v2 The idea now is to solve for expressions for v1 and v2 which

minimize the shell’s elastic energy density, integrated over a small neighborhood of

the surface of size on the order of one wavelength. Since stretching energy dominates

bending energy, it is enough to focus on the stretching energy density (2.2), which is

quadratic in the midsurface strain.

The directions v1 and v2 are slow variables, and so

dvt ≈ (v1 cosϕ+ 2v2 cos 2ϕ) dϕ. (2.10)

We can use this expression, as well as the definition I = drTdr, to write down a

formula for the strain of the midsurface:

I−1
u I − id ≈ I−1

u (Ib − Iu +
1

2
a2dϕTdϕ)

+ I−1
u (−2a IIb + [Ibv1dϕ]T ) cosϕ (2.11)

+ I−1
u (−a

2

2
dϕTdϕ+ 2[Ibv2dϕ]T ) cos 2ϕ.

Here we use the notation MT to denote the symmetrization M +MT . All variables

in this expression are slow, except for the trigonometric functions in ϕ. Intuitively,

strain, and hence elastic energy, is minimized by minimizing each of the trigonometric

coefficients; this idea can be formalized by use of a coarse-graining operator Aharoni

et al. (2017)

X(cg) := |Ω|−1

∫
Ω

XdA (2.12)

which estimates quantitiesX averaged over a neighborhood Ω of radius comparable to

one wrinkle wavelength. Applying coarse-graining to the thin-shell stretching energy

density (2.2) allows us to simplify the energy expression by eliminating oscillatory

terms which might be non-zero pointwise, but average to zero (like sinϕ) or a value
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independent of ϕ (like sin2 ϕ) over a wrinkle wavelength:

W (cg)
s (v1,v2) =

∥∥∥∥I−1
u

(
Ib − Iu +

1

2
a2dϕTdϕ

)∥∥∥∥2
SV

(2.13)

+
1

2

∥∥I−1
u (−2a IIb + [Ibv1dϕ]T )

∥∥2
SV

(2.14)

+
1

2

∥∥∥∥I−1
u

(
−a

2

2
dϕTdϕ+ 2[Ibv2dϕ]T

)∥∥∥∥2
SV

. (2.15)

Notice that v1 and v2 appear exclusively in terms (2.14) and (2.15), respec-

tively, and so we can solve for these variables by minimizing each term independently:

v1 = aI−1
b v, v2 =

a2

8
I−1
b dϕT (2.16)

where

v =

(
α

α + 2β

tr(I−1
u IIb)

∥w∥2Iu
+

2β

α + 2β

wTIIbw

∥w∥4Iu

)
dϕT (2.17)

+ 2
wTIIbw

⊥

∥w∥4Iu

(
dϕ⊥)T ; (2.18)

where to de-clutter notation we define w = I−1
u dϕT to be the vector field on U

aligned with the wrinkle travel direction, and w⊥, dϕ⊥ the vector field and one-form

orthogonal to w and dϕ under the natural Iu and I−1
u inner products, respectively.

The constants α and β are the Lamé parameters. Notice that on a flat sheet, v1 = 0,

confirming the intuition that the role of this term is to modulate the wrinkle shape

to accommodate curvature on the underlying base surface. See Appendix A.3 for the

derivation of these expressions.

To summarize, we now can replace the wrinkle correction term rw in Equa-

tion (2.5) with an explicit formula in terms of rb, a, and ϕ, based on the above

derivations of the in-plane part of the correction term:

r ≈ rb + drbI
−1
b

(
a sinϕv +

a2

8
sin 2ϕ dϕT

)
+ a cosϕn̂b. (2.19)
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2.3.5 Wrinkle Field Energy

Equipped with the formula (2.19) giving the geometry of the midsurface as

a function of the base surface rb and wrinkle field a, ϕ, we can now write down an

expression for the elastic energy of the wrinkled shell in terms of these kinematics.

Note that, unlike in Section 2.3.4, where we were operating at the length scale of

individual wrinkles, and could assume that slow variables are approximately constant,

the elastic energy of the shell is a global quantity and we cannot simply eliminate

terms depending on e.g. the amplitude field derivative da which, while they might

be negligible locally since a is slow, might integrate up into a non-negligible energy

contribution on the scale of the entire shell.

Deriving the elastic energy of the wrinkle field is, in principle, simply a mat-

ter of plugging in Equation (2.19) into the Koiter energy (2.1) and simplifying by

analyzing the scaling of each energy contribution and eliminating negligible terms.

Here we summarize the results of this (in practice, rather involved) procedure (see

Appendix A.4 for the derivation).

We consider the stretching and bending terms in the energy separately.

Stretching Term As discussed above, the expression in Equation (2.11) cannot be

used to measure the strain of the midsurface for the purpose of calculating elastic

energy, since that formula neglected terms that are non-negligible on the scale of

the whole shell. In Appendix A.4 we derive the following energy expression, by

coarse-graining and simplifying the first term in Equation (2.1). We make use of our
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assumptions in Section 2.3.3 about fast and slow variables:

Es =

∫
U

h

4

(
W 1

s +W 2
s +W 3

s +W 4
s

)√
det Iu dudv (2.20)

W 1
s =

∥∥∥∥I−1
u

(
Ib − Iu +

1

2
daTda+

1

2
a2dϕTdϕ

)∥∥∥∥2
SV

(2.21)

W 2
s = 4a2κ2⊥

β(α + β)

α + 2β

((
w⊥)T Ibw

⊥

(w⊥)T Iuw⊥

)2

(2.22)

W 3
s =

a2

32

∥∥I−1
u (dϕTda+ daTdϕ)

∥∥2
SV

(2.23)

W 4
s =

1

8

∥∥I−1
u daTda

∥∥2
SV
. (2.24)

where the vector field parallel to the wrinkle crests w⊥ is defined as in Equa-

tion (2.19), and κ⊥ =
(
w⊥)T IIbw

⊥/
∥∥w⊥

∥∥2
Ib

is the normal curvature of the base

surface along the w⊥ direction.

Although this expression is rather involved, each term can be understood, in

retrospect, in the context of the geometry of the fine-scale wrinkling:

• In regions of pure tension, the base surface strain tensor is positive-definite.

Since daTda and a2dϕTdϕ are also positive-semidefinite, any amount of wrin-

kling simply drives up the energy contribution W 1
s ; this term therefore inhibits

wrinkling in regions of pure tension.

• Both da and dϕ play an interchangeable role in W 1
s . However as discussed

in Section 2.3.3, we want wrinkle frequency, and not wrinkle amplitude, to

absorb compression strain. W 4
s penalizes large variations in winkle amplitude,

enforcing that the compression is absorbed by dϕ, not da inW 1
s . In other words,

W 4
s enforces that ϕ is the fast variable, and a is slow.

• In regions of mixed tension and compression, assuming that amplitude is con-

stant (da = 0), W 1
s is minimized by aligning the wrinkle direction dϕ with the

principal compression direction. Moreover, we therefore recover the intuitive

coupling between amplitude, frequency, and strain described in Equation (2.8).
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• TheW 2
s term injects dependence on curvature into the determination of wrinkle

amplitude and frequency: high-amplitude wrinkles whose peaks and valleys run

along directions of high curvature are penalized. Wrinkles where the isolines of

ϕ run along directions of low curvature do not suffer this penalty, even if the sur-

face is highly-curved in the wrinkle travel direction dϕ. This behavior matches

the expected effect of the v2 on wrinkle shape, as described in Section 2.3.4.

• Finally, W 3
s penalizes large changes in amplitude along crests of the wrinkle

waves. This matches intuition: amplitude is free to change from one wave to

the next, but since wrinkle crests align with directions of tension in the shell,

we do not expect variations in wrinkle amplitude along one wrinkle.

Bending Term Bending of the wrinkled shell at two scales contributes to the total

bending energy: 1) bending of the base surface itself, which contributes energy with

formula directly analogous to Equation (2.3); 2) bending at the fine scale, due to

wrinkling. We estimate this latter term from Equation (2.19) by assuming that the

contribution to wrinkle curvature from variations in ϕ dominate any contributions

from changes in a or n̂b. In other words, at the fine scale IIu ≈ 0 and

I−1
u II = I−1

u d2r · n̂b ≈ −a cosϕI−1
u dϕTdϕ. (2.25)

Coarse-graining this second contribution and adding it to the first yields an expression

for bending energy,

Eb =
h3

12

∫
U

(
W 1

b +W 2
b

)√
det Iu dudv,

W 1
b =

∥∥I−1
u (IIb − IIu)

∥∥2
SV
, W 2

b =
a2

2

∥∥I−1
u dϕTdϕ

∥∥2
SV
.

(2.26)

To sum up, the total elastic energy, in terms of the base surface embedding rb

and the wrinkle field degrees of freedom a and ϕ, is

Ewf = Es + Eb. (2.27)
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(a) TFT base mesh (b) Our (TFW) result (c) TFW without v1 term

Figure 2.4: Simulated cylinder wrinkles using our model (see Section 2.4) on a cylinder
whose boundaries have been clamped and twisted: (a) the 1.3k-vertex base mesh, (b)
our result with the v1 in-plane correction term included, and (c) our result with this
term omitted. With in-plane correction, we get 46 waves, which is consistent with
results from traditional shell solvers (see Figure 2.21). Without in-plane correction
that accounts for the base surface curvature, our model predicts spuriously high
wrinkle frequency (over 180 wrinkles; you may need to zoom in to see them).

Notice that this energy depends only on the wrinkle frequency and direction (dϕ) and

not directly on the phase itself (ϕ); as expected since applying a global phase shift

to ϕ changes only fast variables, and should not change the coarse-grained energy of

the full shell. We will exploit this invariance when we discretize Equation (2.27) in

Section 2.5.

2.3.6 Necessity of In-plane Wrinkle Correction

Given the complexity of the stretching energy Es, one might look for further

simplifications. One source of the complexity are the in-plane wrinkle correction terms

in Equation (2.19). Dropping one or both of these terms (and in doing so, modifying

our assumptions about the shape of the wrinkles at the fine scale) significantly modi-

fies the energy Es. Without v2, there is no longer an asymmetry (from W 4
s ) between

frequency induced by dϕ and by da; in other words, there is no longer enforcement
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of a being slow and ϕ being fast. Dropping v1 significantly changes the curvature

term W 2
s . Both modifications severely degrade the accuracy of wrinkles we recover

using the numerical procedure we next describe in Section 2.4, suggesting that both

in-plane correction terms, and all resulting terms in Es, are essential to the wrinkle

model. In Figure 2.4 we perform an ablation study on v1.

2.4 Solving for Static Wrinkled Shape

We now describe an algorithm for using the wrinkle field model of Section 2.3

to optimize for the static equilibrium shape of draped cloth, inflatable structures, and

other wrinkled shells.

One could entertain jointly optimizing the wrinkle field elastic energy in Equa-

tion (2.27) for both the base surface shape as well as the a and ϕ fields. The challenge

with this approach, though, is that our analysis in Section 2.3 assumed that the base

surface was smooth, with curvature a slow variable. Optimizing jointly for both the

base surface and wrinkle fields without enforcing the slow-ness of rb leads to spuri-

ous, aliased solutions similar to Figure 2.2. See Section 2.7 for more discussion of

joint optimization. Here we instead propose a simpler scheme, where we first esti-

mate the base surface shape, and then fix rb and separately solve for the wrinkle field

parameters a, ϕ on that base surface.

2.4.1 Computing the Base Surface

As argued in the introduction, a low-resolution FEM simulation of the shell

is not a good choice for rb: not only does the coarse simulation lack high-frequency

wrinkles, it also already possesses incorrect aliased, low-frequency wrinkles which our

wrinkle field model is not equipped to correct.

For tension-dominated problems, optimizing rb using tension field theory is a

better choice. A thin shell is tension-dominated if, at most points on the surface, the

shell is either in pure tension, or in a mix of tension and compression (it is in these
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latter regions that wrinkles typically form). Examples of tension-dominated shells

include garments hung or draped against gravity, chambers under internal pressure,

and fabrics or films tugged by external loads or boundary constraints. Shells under

primarily pure compression (such as cloth that is balled up on the floor, or axially-

crushed coke cans) are not tension-dominated, and out of scope for our approach.

Tension field theory exploits the fact that wrinkles play little role in force

transmission, by formulating a simplified description of local stresses as having only

tension components, directed along directions of positive principal stress Mansfield

(1989); Steigmann (1990); Pipkin (1986, 1994). The theory can be viewed in terms of

a modified or relaxed variant of the membrane energy density in Equation (2.2) Pip-

kin (1986, 1994); see Appendix A.2 for an overview. TFT optimizes for the coarse

envelope of the shell, ignoring local high-frequency wrinkling by allowing the shell to

compress without buckling. The TFT result is thus ideal as a base surface rb for

wrinkle augmentation, using the theory of wrinkle fields developed in Section 2.3.

Since the TFT solution expresses only low-frequency geometric features, it remains

accurate even for very coarse discretizations of the domain U ; moreover the modified

stretching energy is convex and efficient to minimize Skouras et al. (2014). Fig-

ure 2.16, left, shows a TFT simulation of a dress draped on a mannequin. Notice

the smooth, wrinkle-free shape and coarse tessellation. We present many more TFT

base meshes in Section 2.6.

Base Surface Bending Model Tension field theory gives a convex replacement

for stretching energy, when solving for the base surface shape rb. With an eye to-

wards additional improvements in efficiency and robustness of the base mesh solve,

for rest-flat shells we recommend also replacing the elastic bending energy density

(Equation (2.3)) with Bergou et al. (2006)’s Quadratic Bending model,

W qb
b = α⟨∆urb,∆urb⟩Iu , (2.28)
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where ∆u denotes the Laplace-Beltrami operator on U with respect to the metric Iu,

and α is the first Lamé parameter. We also adopt Wang et al. (2015)’s correction

terms to account for the bending energy at the free shell boundaries.

Advantages of quadratic bending over the full shell bending energy include:

• W qb
b , being quadratic in the base surface embedding rb, is convex, so that the

total elastic energy of the base mesh (TFT+Quadratic Bending) is convex;

• the energy is very easy to implement.

Quadratic Bending assumes that the shell is deforming isometrically; this assumption

is violated in many of our examples, where the base surface compresses significantly.

Nevertheless, we did not observe much change in the shape of the base mesh by

substituting Quadratic Bending for Equation (2.3). For the dress examples in Fig-

ures 2.14 and 2.16, the Hausdorff distance between the base surface computed using

full bending, and Quadratic Bending, is 1% of the dress diameter.

2.4.2 Computing the Wrinkle Fields

Once we have found the base surface, we compute a wrinkle field over that

surface by minimizing Equation (2.27). Here we describe a couple of additional sim-

plifications and reformulations we recommend to simplify this task.

Approximation of w Notice that in the W 2
s term in the wrinkle field stretching

energy, the direction of w is used (both in computing κ⊥ and in the formula for

W 2
s itself), but not its magnitude. Moreover, as discussed in Section 2.3, the main

unknown in solving for the wrinkle field is the tradeoff between amplitude and wrin-

kle frequency. Wrinkle direction is strongly encouraged to align with the principal

compression direction of base surface strain, by the energy term W 1
s . We therefore

approximate w as a constant (rather than a function of dϕ) given by the solution to
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the generalized eigenvalue problem

(Ib − Iu)w = λIuw (2.29)

with most negative eigenvalue λ. In regions where neither eigenvalue is negative (i.e.,

in regions of pure tension) we simply ignore the W 2
s term, under the assumption that

a ≈ 0 in those regions.

Solving for Frequency Instead of Phase In our formulation in Section 2.3, we

assume that ϕ is a periodic function. The need for periodicity is evident even in very

simple wrinkling scenarios, such as the drape of a square piece of cloth over a sphere

(see Figure 2.19): rotationally symmetric wrinkles appear around the circumference

of the draped cloth, corresponding to a ϕ which continuously linearly increases as you

circulate around the draped portion of the cloth (as shown in Figure 2.19, middle-

right). Since Equation (2.27) depends only on the phase field derivative dϕ and not

on the phase itself, we eschew optimizing for ϕ, and instead borrow from the surface

parameterization and stripe pattern optimization Knöppel et al. (2015) literature the

idea of expressing the wrinkle field elastic energy in terms of the one-form ω = dϕ.

In other words, we solve

argmin
a,ω

Ewf(a, ω)

s.t.
a ≥ 0,
∀p ∈ U, a(p) = 0 or curlω(p) = 0.

(2.30)

Here the first constraint enforces that wrinkles cannot have negative amplitude, and

the second ensures that the recovered ω can be written, at least locally, as the deriva-

tive of a phase field ϕ, everywhere where wrinkles are visible (amplitude is positive).

We provide more detail about how to discretize and solve this variational problem in

the next section and in Appendix A.6.
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2.5 Discretization and Solver

Our pipeline for computing and visualizing the static shape of shells using a

TFT base mesh and a wrinkle field consists of the following steps:

1. We triangulate U into a coarse simulation mesh K = (Vu, F, E), with vertices

Vu = {v1
u,v

2
u, · · · } (Appendix A.6.1).

2. We solve for the base mesh embedding Vb = {v1
b ,v

2
b , · · · } by minimizing the

TFT and Quadratic Bending energies (Section 2.4.1).

3. We represent a as a function on the vertices of K, and ω as a one-form on the

mesh edges. We estimate an initial guess for these variables, based on Vu and

Vb (Appendix A.6.2).

4. We also locate the faces of K on which the base mesh exhibits pure tension.

We collect these faces into a set of wrinkle-free faces W (Section 2.5.1).

5. We solve the optimization problem in Equation (2.30) for a and ω, using sequen-

tial quadratic programming. We relax the complementarity constraint in this

problem by making use of the wrinkle-free facesW (Section 2.5.2 and Appendix

A.6.3).

6. We integrate ω to recover the phase field ϕ. Each face maintains a separate

value of ϕ for its three vertices (i.e., ϕ ∈ R3|F |) to support the 2π-periodicity of

the phase field (Appendix A.6.4).

7. Finally, we visualize the result by upsampling the base mesh and wrinkle fields

using Loop subdivision, and displacing the resulting geometry using Equa-

tion (2.19) (Appendix A.6.5).

The output of the above Tension Field + Wrinkle (TFW) pipeline is our prediction

of the shell static shape, shown in Figure 2.16, and throughout Section 2.6. In what
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follows, we discuss the details most critical to understanding and implementing the

above pipeline. Further implementation details can be found in Appendix A.6.

2.5.1 Relaxed Integrability

As we wrote in Equation (2.30), when minimizing elastic energy with respect

to a and ω, we will want to maintain that curlω = 0 everywhere except in regions

where wrinkles do not exist (amplitude vanishes), so that we can (locally) integrate

ω into the phase field ϕ. As has been observed many times by researchers in surface

parameterization Kälberer et al. (2007); Bommes et al. (2009), it is absolutely crucial

that singularities, where a = 0 and curlω ̸= 0, be allowed to exist. These singularities

are topologically required to recover reasonable one-forms ω, even on simple examples.

Consider for instance again the example of a square cloth draped on a sphere, shown

in Figure 2.19. The obvious solution ω to recover correct wrinkling of the cloth is for

ω to circulate (like a whirlpool) around the square’s center; clearly the path integral

of ω around the square’s boundary here is nonzero. But then it is impossible for

curlω = 0 at every point on the square (doing so would violate the fact that every

closed one-form on a simply-connected region is exact).

Ideally, our solver would automatically place these singularities in the optimal

location (at the north pole of the sphere, in this case), by enforcing the complemen-

tarity constraint in Equation (2.30) on a and curlω. However, we are not aware of

a simple algorithm for doing so. Instead we make the following observations, leading

to a heuristic for placing singularities in reasonable locations a priori:

• in regions under pure tension, the energy term W 1
s strongly penalizes placing

any wrinkles at all. It is reasonable to therefore assume that a = 0 in these

regions;

• conversely, a singularity where amplitude vanishes is most likely to be located

in a region of pure tension, than in a region of mixed tension and compression

or pure compression (where W 1
s penalizes the lack of wrinkling).

47



Our heuristic, therefore, is to force a = 0 on a set of wrinkle-free faces W that are

under pure tension, and to relax integrability of ω on those faces, allowing the solver

to anchor singularities at these faces. To compensate for the coarseness of the base

mesh (which often only has thousands or hundreds of triangles), we perform some

smoothing before classifying triangles as being under pure tension: we average each

triangle’s most-negative eigenvalue with that of its three neighbors, and if this average

is positive, add the triangle to W . After this procedure, we filter outliers from W by

removing any triangle in W whose three neighbors are not members, and adding to

W any triangle whose three neighbors are already members.

Figure 2.19, right, shows the results of TFW with and without this relaxation

of the curl constraint on wrinkle-free faces. Without relaxation (top-right), we do not

recover a reasonable phase field, since the global integrability constraint will force ϕ

to zig-zag as you travel around the square’s circumference, rather than increasing in

a smooth gradient.

2.5.2 Optimization

We discretize a using piecewise-linear elements over K, and discretize ω as a

one-form on the edges E, in the style of discrete exterior calculus. On triangles where

integrability of ω is enforced, we do so via the linear constraint dω = 0. We treat

first and second fundamental forms Iu, IIu as constant over each triangle; see Ap-

pendix A.1 for the relevant formulas. We can then write the energy of Equation (2.30)

as a sum of integrals over the triangles not in W ; we compute these integrals using

three-point quadrature Zhang et al. (2009).

After the above discretization, finding a and ω amounts to minimizing a

degree-eight polynomial objective function, subject to linear equality constraints (en-

forcing integrability) and inequality constraints (enforcing positive amplitudes). We

solve this problem via sequential quadratic programming, applying the NASOQ QP

solver Cheshmi et al. (2020) to compute the constrained descent directions at each
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iteration. For more details about the discretization and solver implementation, please

see Appendix A.6.3.

2.6 Evaluation and Discussion

Below we consider the behavior of the TFW pipeline on a wide range of test

examples designed to investigate both fidelity to experimental results as well as com-

parison to results obtained by large degree-of-freedom, traditional shell simulators.

For the latter we utilize three representative simulators:

• As a best-in-class academic library for shell modeling we apply ARCSim Narain

et al. (2012b, 2013), a widely deployed dynamics cloth simulator. Critically for

our comparison, ARCSim offers the option of adaptive remeshing, which allows

traditional shell simulation to capture fine wrinkle details with lower degree-of-

freedom meshes by only refining specific triangles. To apply ARCSim for solving

statics we apply critically damped time-steps to equilibria. In the following, for

each ARCsim example, we will indicate when the adaptive remeshing option is

applied or not.

• As a high-performance commercial cloth simulator we also include comparisons

with Marvelous Designer CLO Virtual Fashion Inc (2020), a widely-used indus-

trial garment-design tool that deploys its own proprietary statics physics solver

for predicting garment drape. In the following we will denote this simulator as

MD.

• Finally, to compare with a baseline, consistent shell model we implement a

thin shell statics simulator that solves for the St. Venant-Kirchhoff material

model with constant-strain stretching elements and mid-edge bending (Morley)

elements Weischedel (2012); Chen et al. (2018a); Grinspun et al. (2003). In

the following we will denote this simulator as StVK. We made a best effort

to optimize this baseline code, while restricting computation to the CPU; 70%
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of each Newton iteration is consumed by our chosen third-party linear solver

(SuiteSparse’s CHOLMOD Chen et al. (2008)) which gives us confidence that

our code is free of gross inefficiencies. See Appendix A.5.1 for a detailed timing

breakdown.

The full data set of meshes used in our evaluation and the source code of both

our TFW and StVK reference implementations can be found here.

2.6.1 Draping Behavior

We begin by analyzing the qualitative behavior of TFW on a series of real-

world draping examples exhibiting complex wrinkling geometries and nontrivial wrin-

kle topology. Notice that unlike data-driven wrinkle-recovery methods, our method

is purely model driven. No user guidance nor extra data beyond material parameters

and boundary conditions are required. For examples with this level of complexity,

exact comparisons do not make sense (many of these drapes likely have multiple

metastable states, even before taking differences in how each solver models physics

and frictional contact into account). In later sections we will perform exact com-

parisons on simpler model problems where experimental and/or analytic results are

known; here, instead, we show that TFW results are comparable qualitatively to those

generated by traditional solvers. To set the material parameters, we first choose one

of the predefined fabrics given in ARCSim (Navy Sparkle Sweat), then derive ap-

proximate physical parameters from the provided bending and stretching stiffnesses.

We get the following material parameters for TFW and StVK : density 200kg/m3,

0.3 Poisson’s ratio, 0.1MPa Young’s modulus and thickness 1mm. MD does not ex-

pose these same material parameters, so we instead manually select a material from

MD ’s predefined palette of material types that gives us closest-matching results to

StVK/ARCSim.
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Sphere Drape We first drape a square cloth (1m×1m) over a sphere of radius 0.2m.

In Figure 2.19 we demonstrate the resulting base surface rb, from the joint TFT and

Quadratic Bending modeling on a domain with 1.6k vertices, and the resulting TFW-

generated surface after we visualize the wrinkle field on the base surface. We also

show results for ARCSim (with adaptive remeshing) andMD : for the former, the final

adaptive mesh has 32k vertices. For MD, we manually search for the coarsest mesh

able to resolve the cloth’s wrinkles; in this case, 72k vertices. The resulting TFW

wrinkles are qualitatively similar in frequency and amplitude, especially compared to

MD, although, as discussed, it is hard to infer ground truth here since we see broken

symmetry in both ARCSim and MD results, where two sides of the front corner have

differing shapes, suggesting that there are many metastable solutions. One noticeable

difference is that TFW does not “puff out” as much as the other two simulations; and

the wrinkles do not collapse and flatten under their own weight in the manner that

is seen in the ARCSim and MD results. See Section 2.7 for more discussion of these

limitations.

Garments We next consider garment drapes. We pose two dress patterns (from the

Berkeley Garment Library) and a pair of pants on mannequins. Figures 2.14, 2.15,

and 2.16 detail results and relevant mesh resolutions for all solvers. These examples all

demonstrate complex geometry and topology; notice that our results recover wrinkle

fields with widely-varying frequency and direction, and that despite the coarse base

mesh employed, TFW generates results qualitatively close to the three traditional,

high-degree-of-freedom cloth solvers. The last column in Figures 2.14, 2.15, and 2.16

present final results when employing ARCSim with adaptive remeshing enabled. Here

these adapted-mesh examples give a sense as to why traditional simulations generally

succeed in recovering wrinkle details only when the simulation mesh is at quite high

resolution (over 40k vertices were needed for these three garment examples). Our

TFW model generates comparable wrinkle patterns with just a few thousands vertices

per example (3.4k, 1.4k and 4k for the two dresses and pants respectively).
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2.6.2 Resolution Analysis

We consider the sensitivity of traditional shell simulators to their mesh reso-

lution, and contrast with the TFW pipeline’s low-resolution requirements for its base

mesh. To do so we study the asymmetric dress as well as a new example, a twisted

cylinder (see Figure 2.21): here a cylindrical (but rest-flat) shell of radius 1m, height

5m, and thickness 0.1mm, clamped at the top and bottom boundaries, is twisted at

the top boundary by 10◦ while keeping the distance between the top and bottom

boundaries constant. This example uses 0.44 Poisson’s ratio and 10MPa Young’s

modulus. The cylinder example is ideally suited for a convergence analysis, as the

number of wrinkles around the cylinder is objective, discrete, and easily-counted.

We can thus use the number of wrinkles as a proxy for how rapidly each simulation

method converges under refinement.

We first test TFW on irregular meshes for these examples with increasing

resolutions. For the dress, we start from a base mesh with only 382 vertices and

monotonically increase the mesh resolution. We observe that our model converges to

a consistent shape at ≈1.4k vertices (see Figure 2.18). Applying the same test on

the twisted cylinder yields an even more impressive result, where a consistent shape

emerges at ≈180 vertices (see Figure 2.21).

We next probe the behavior of the traditional solvers by performing the fol-

lowing experiments: (1) we run StVK, for irregular meshes of increasing resolution;

(2) we do the same for ARCsim, with adaptive remeshing disabled in order to force

use of a mesh with given resolution; and (3) we run ARCSim with adaptive remeshing

enabled. See Figures 2.20 and 2.21 for results. Clear aliasing of high frequencies are

evident, as expected, at coarse resolutions. For the twisted cylinder, it is difficult to

say how close StVK and ARCSim are to converging, as the wrinkle number keeps

changing for them even for meshes with over 96k vertices. Similarly, adaptive remesh-

ing also has trouble determining a final, consistent state. Here we show the result

of adaptive meshing after waiting two days (8,000 simulation steps). This example
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illustrates that adaptive meshing is not a silver bullet for effectively resolving wrinkle

features: adaptivity does not provide appreciably smaller meshes in examples like this

when fine wrinkles cover a large portion of the shell surface. Moreover, this exam-

ple illustrates how local refinement can introduce artifacts in the final shape: earlier

decisions about where to refine biases how the shell later deforms; see the unequal

wrinkle spacing in Figure 2.21, left column.

Unlike the cylinder example, a careful convergence analysis is not possible

for the dress example, as we observe that for all methods, the same code and the

same mesh with different initializations can converge to different solutions. We can

determine that the traditional simulators all appear to roughly converge for this

example with meshes in the range of about 20–40k vertices for each solver. We also

observe that ARCSim, both with and without remeshing, yields qualitatively different

solutions for the dress example. Despite the lack of quantitative certainly, we can

confidently conclude, however, that the resolution required to reproduce wrinkles

with frequency and fidelity qualitatively equal to those predicted by our method

generally requires approximately an order of magnitude higher resolution than TFW

for all three simulators (ARCSim, StVK, and MD) for both the cylinder and dress

examples.

2.6.3 Meshing Independence

We next probe mesh-dependence of TFW by testing four differently generated

simulation meshes for the same dress-drape example. We consider meshes generated

by: (a) direct Delaunay triangulation (via the Triangle library Shewchuk (1996)); (b)

upsampling from a lower-resolution Delaunay mesh, where we use a modified Loop

subdivision to keep vertices along seams of the garment stitch pattern unchanged;

(c) downsampling from a finer Delaunay mesh, where we also keep the seam vertices

unchanged; and (d) extracting a mesh from ARCSim after allowing it to take one

step with its adaptive remeshing enabled. We run our TFW pipeline for each of the
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four simulation meshes. Figure 2.17 demonstrates that, despite these variations in

triangulation, the final wrinkled shapes are consistent.

However, as the tension field theory provides no penalty on compression, a

given amount of compression applied to region of a surface may not equidistribute

within that region, so that compressive strain may end up concentrated in only a

narrow strip of triangles. In practice we do observe some inconsistency (≈15%) in

our model (see the third and fourth columns of Figure 2.21) for regular, structured

meshes, due to this phenomenon. For example, while for the irregular Delaunay

mesh (1.3k vertices) we get 46 waves, for the regular mesh generated by diagonalizing

a regular N × K quad mesh, where N refers to the number of uniform azimuthal

samples, and K the number of uniform axial samples, we get varying wave numbers:

for the ones diagonalized to align with the twist direction, we have 39 and 38 waves,

and for the ones with opposite diagonalization, this number is 40, where we tested

with N = 80, K = 12, and N = 120 and K = 9.

In turn, we observe that traditional solvers can also suffer from artifacts on

regular meshes aligned unfavorably with the wrinkles. First consider the StVK sim-

ulator. The last three columns in Figure 2.21 illustrate this effect, where we test the

StVK simulator with mesh resolutions ranging from 6k vertices and then doubling

resolution until 96k. The seventh column in Figure 2.21 shows the results for irregu-

lar Delaunay meshes, where the wrinkle frequency increases from 10 to 19. For the

regular mesh diagonalized along the twist direction, the number of wrinkles oscillates

(the eighth column in Figure 2.21), whereas for the meshes diagonalized in the op-

posite way, this number increases from 12 to 20 (the ninth column in Figure 2.21).

For such problems, we observe that even ARCSim has convergence issues, ultimately

producing an irregular wrinkle pattern with 69k vertices; see the first two columns in

Figure 2.21.
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2.6.4 Accuracy

To further investigate accuracy of the TFW model we now consider examples

where the wrinkling behavior is known either through analysis or experiment.

(a) TFT base mesh (b) TFW

(c) StVK with 260k vertices (d) ARCSim

Figure 2.5: Simulation of wrinkles in a highly stretched sheet Wang et al. (2018).
(a) TFT base mesh with 522 vertices. (b) TFW predicts correct wrinkling to within
20% of theoretical values with the given base mesh. (c) StVK will also predict
qualitatively-correct wrinkles, however only starting with meshes at a resolution of
260k-vertices and higher. (d) ARCSim’s result, with adaptive remeshing. The final
mesh has 13k vertices.

Stretched Sheets In a pioneering experiment, Cerda and Mahadevan (2003) stud-

ied wrinkling in a thin sheet whose left and right boundaries are clamped and then

pulled apart. The sheet compresses in the perpendicular (vertical) direction due to

Poisson’s ratio and horizontal wrinkles appear. They provide scaling laws for de-

termining the wrinkle frequency and amplitude. A range of successive works have

extended the detailed study of this problem analytically and numerically with vary-

ing elasticity models Healey et al. (2013); Li and Healey (2016); Wang et al. (2018).
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(a) 16k vertices (b) 32k vertices

(c) 65k vertices (d) 130k vertices

Figure 2.6: Simulation of wrinkles in a highly stretched sheet Wang et al. (2018)
using the StVK model on a sequence of Delaunay meshes. (a) No waves appear in
the mesh with 16k vertices. (b) 3 waves with 0.17mm peak amplitude appear when
mesh resolution increases to 32k. (c) A 65k-vertex mesh yields 3 waves but 0.27mm
peak amplitude. (d) Mesh with 130k vertices ends up with 3 waves and 0.31mm peak
amplitude.

We simulate this model problem with a rectangular sheet of size 0.25m×0.1m,

with thickness 0.1mm, Poisson ratio ν = 0.5 and Young’s modulus Y = 1MPa. TFW

produces wrinkles with 5 wave periods and a peak amplitude 0.42mm on a base mesh

of 522 vertices. These values are within 20% of the results determined by Wang

et al. (2018) (0.35mm for peak amplitude). In comparison, ARCSim with adaptive

remeshing enabled, generates a mesh of 13k vertices, producing 5 wrinkles and peak

amplitude of 0.34mm. See Figure 2.5 for visualization of these results.

Despite the seeming simplicity of this example set-up, traditional simulation

methods struggle to correctly predict the wrinkling behavior here and so it provides a

simple “unit-test” for accuracy. StVK can produce wrinkles, but success is sensitive

to resolution. We test StVK on a sequence of Delaunay meshes of the rectangle,
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(a) TFW (b) Vandeparre et al. (2011)

Figure 2.7: Comparison of (a) our method and (b) wrinkles generated using the
scaling law of Vandeparre et al. (2011) for the model problem of a highly stretched
sheet Wang et al. (2018). In examples where the wrinkles are not caused by wrinkles
propagating inward from a clamped boundary, the analysis of Vandeparre et al. does
not apply.

doubling the number of vertices each time. Wrinkles first appear at 32k vertices, but

the predicted pattern still does not converge to a consistent result even as we ex-

tend StVK to a 260k vertex mesh. For this highest-resolution mesh StVK generated

a solution with 3 wave periods and peak amplitude 0.33mm (Figure 2.6 and Fig-

ure 2.5(c)). Given that the amplitude of the wrinkles is quite small compared to the

dimension of the overall structure, membrane locking Chapelle and Bathe (2011) is

likely responsible for artificially stiffening the material, especially on “coarse” meshes.

We also use this model problem to probe the scaling law proposed by Van-

deparre et al. (2011), and suggested by Evgeny and Harders (2019) for use in cases

where a wrinkling shell is not bonded to a volumetric substrate. As shown in Fig-

ure 2.7, although the Vandeparre et al. scaling law is suitable for predicting frequency

cascades in wrinkles that propagate inward from clamped boundaries, it is not suit-

able for predicting more general wrinkling patterns, even in simple cases like the

stretched sheet experiment.

Sheared Rectangles Wong and Pellegrino (2006) study the wrinkle profile of a

sheared rectangle whose top and bottom boundaries are clamped and sheared in the

horizontal direction while its left and right boundaries are left free. We reproduce
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(a) The experimental result (b) TFW

(c) StVK (d) ARCSim

Figure 2.8: A thin rectangular sheet sheared in the horizontal direction. (a) The
experiment result from Wong and Pellegrino (2006) yields 19 wrinkles, (b) our method
(TFW) produces 25 wrinkles, (c) StVK generates 13 wrinkles, and (d) ARCSim gives
26 waves.

their experimental set-up in simulation, where TFW generates 25 wrinkles with 1k

vertices. As in the previous experiments, we search for the minimum-resolution of the

simulation for which ARCSim and StVK does not exhibit significantly degraded wrin-

kling; under this methodology ARCSim gives 26 wrinkles using an 18k-vertex mesh,

and StVK produces 13 wrinkles on a 20k-vertex mesh. Wong and Pellegrino report 19

wrinkles in the actual experiment. Visually, as presented in Figure 2.8, TFW shows

consistency with the real world example, where both the simulated wavelength and

wrinkle direction are well-aligned with the experimental result. Finally, notice from

the experimental photograph that our assumption of a single dominant wavelength is

valid over most of the wrinkled surface, and that our model recovers these dominant

wrinkles; however there is also a thin boundary layer near the clamped edges of the

sheet where a superimposed second frequency of wrinkles can be seen. Our model
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(a) TFW (b) Vandeparre et al. (2011)

Figure 2.9: Comparison of wrinkles generated using (a) our method and (b) the
scaling law of Vandeparre et al. (2011) for shearing a rectangular sheet Wong and
Pellegrino (2006). Again, in this example, the interior wrinkles are not caused by
boundary wrinkles that propagate inward from a compressed, clamped boundary
(here the boundary is sheared inextensibly), so the analysis of Vandeparre et al. does
not apply. You can see unnatural wrinkles near the top and bottom boundaries in
(b).

cannot currently resolve these secondary wrinkles; see Section 2.7 for discussion of

how our model might be extended to the case of multiple superimposed wrinkles.

For this problem, we also compute the wrinkles using the scaling law proposed

by Vandeparre et al. (2011), which is suggested by Evgeny and Harders (2019) as an

extension of their method for shells with no substrate. Similar to the stretched sheet

experiment, we observe unnatural behavior near the boundaries (see Figure 2.9).

Inflated Structures Inflatable structures exhibit a wide range of complex wrin-

kling behaviors that have been modeled with direct application of tension-field simu-

lations Skouras et al. (2014). Here we consider TFW’s behavior on a range of inflated

examples by augmenting our TFT model with Skouras et al. (2014) pressure force.

In each of the following three examples we inflate a balloon design formed by sewing

together two copies (panels) of a planar domain along their boundaries: an annulus,

disk, and rectangle.

Sewing two annuli (Poisson’s ratio ν = 0.44, Young’s modulus Y = 10MPa)

together (inner radius 0.04m and outer radius 0.1m) yields a torus. We observe
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fine wrinkling around the outer equator of the torus when simulating TFW with a

2k vertex base mesh. We perform the same experiment with StVK, observing that

wrinkles are not fully resolved until we reach a mesh of 40k vertices (Figure 2.10).

Two disks (radius 0.1m) sewn along their boundary yields the classic Mylar

balloon, with wrinkles around the equator. Here we use the same material parameters

as in the previous example. Interestingly, for this example, inspecting a real-world

balloon reveals features at two scales: a small number of coarse creases appear equally

spaced around the equator, with fine wrinkles in between. Both features can also be

seen in the StVK simulation of the Mylar balloon, and in previous simulations of this

problem using adaptive subdivision finite elements Vetter et al. (2014). Here we find

that StVK requires a simulation mesh of at least 40k vertices to resolve these features.

TFW also produces a result with both scales of features, despite its wrinkling model

assuming only a single wrinkle frequency (Figure 2.10). This behavior is surprising at

first until we observe that the creases already begin in the TFT base mesh. The TFW

wrinkle model then appropriately augments these creases with the fine wrinkles. We

are currently uncertain when and why these sharp creases appear in the base mesh,

but do verify that this is not an artifact due to the choice of our bending model: these

sharp creases appear even if there is zero bending energy (Figure 2.11). We do observe

that resolving the sharp creases requires a relatively high base mesh resolution relative

to correctly predicting the compression field and fine wrinkling; in this case we get

sharp creases if our base mesh has at least 5k vertices. There has been relatively little

work in the physics literature studying TFT in this regime; better understanding of

creasing behavior in TFT base meshes and likewise its corresponding implications for

TFW wrinkling remains promising future work.

Two rectangular patches (width 1.4m, height 0.74m), with thickness 1mm,

Poisson’s ratio 0.3 and Young’s modulus 0.1MPa, when inflated yield the classic

“teabag” shape. Understanding the coarse shape and wrinkling of this teabag is a

classical problem in mathematics Paulsen (1994); Pak and Schlenker (2010). TFW

with a 1k-vertex mesh predicts fine wrinkles around the boundary of the teabag,
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(a) TFT base mesh (b) TFW (c) StVK

(c) TFT base mesh (d) TFW

(e) StVK (f) Real balloon

Figure 2.10: The simulated results of inflated annulus and disk experiments. Top:
from left to right, a 2k base mesh, the TFW solution, and the StVK solution, on
a mesh with 40k vertices. Middle left: the simulated TFT base mesh for the disk
balloon, with 5k vertices. Middle right: the wrinkled mesh produced by TFW. Bottom
left: simulated result on 40k-vertex mesh. Bottom right: the real-world balloon.

but here we do not additionally recover the coarse creases evident in a 30k StVK

simulation (Figure 2.12). Again, as in the “Mylar balloon” discussion above, this

behavior is closely related to how well the base mesh resolves creasing. Here we only

start to see creases in the base TFT mesh at finer resolutions (≈30k vertices).

Lastly, we simulate wrinkles on the Teddy bear example from Skouras et al.

(2014). This bear has more complex inflated geometry—it is sewn from 17 planar

patches. TFW generates wrinkles in a 2k-vertex base mesh that are qualitatively

similar to those that appear in a StVK simulation starting at around 98k vertices

(Figure 2.13).
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TFT bending type 2k 3k 5k 10k 20k 40k

Quadratic bending

No bending

Figure 2.11: The simulated tension field result of the inflated disk experiment. From
left to right the resolutions are 2k, 3k, 5k, 10k, 20k, 40k. Top row : simulated TFT
model with quadratic bending. Numbers of sharp creases are 1, 4, 8, 10, 11, 12.
Bottom row : the simulated TFT model without bending term; the corresponding
wrinkle numbers are 2, 5, 8, 10, 10, 10.

2.6.5 Performance and Numerical Convergence

In this work we have focused on accurately capturing the wrinkling features

of thin shell elastica with as few computational degrees of freedom as possible. In

so doing we have derived the TFW model which successfully obtains fine wrinkling

behavior over a wide range of examples, with generally an order-of-magnitude less

degrees-of-freedom than standard shell methods; our method generally requires an

order of magnitude less computation time as well. We summarize the resolution and

timing of our experiments in Table 2.1. We ran our experiments on a desktop with a

8-core Intel Core i9-9900K CPU, clocked at 3.6 GHz and 128 GB of memory.

Resolution Comparisons We compare TFW, StVK, and ARCSim in terms of the

lowest-resolution mesh required in order to resolve the wrinkles without significant

degradation. For TFW and StVK, we begin with a lowest-resolution Delaunay mesh,

and solve for the static wrinkled shape; we double the resolution of the mesh and

repeat the experiment until the wrinkle pattern converges to a consistent shape, or
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(a) TFT base mesh (b) TFW (c) StVK (d) MD

Figure 2.12: The simulated result of inflated teabags: (a) the TFT base mesh with 936
vertices; (b) shape recovered using TFW; (c) StVK simulation on a 30k-vertex mesh,
and (d) Marvelous Designer simulation with 30k vertices. Among all these results,
StVK achieves the most natural shape (sharp creases + small wrinkles). TFW will
need a much higher resolution to capture these sharp creases in the TFT base mesh.

(a) TFT base mesh (b) TFW (c) StVK

Figure 2.13: Inflated Teddy bear: (a) the 2k-vertex TFT base mesh, (b) correspond-
ing TFW result, and (c) simulated result with StVK (98k vertices). We can see TFW
predicts a similar wrinkle patterns as StVK , but requires 50 times fewer vertices.

until the simulation takes more than a week to terminate (in which case we halt

the experiment). The resolution in the table is the lowest at which the result is

the consistent wrinkled shape. We indicate with a “−” superscript the simulations

where the coarsest-resolution simulation is already consistent (so that potentially even

lower-resolution consistent simulations are possible) and with a “+” superscript those

simulations that became too computationally expensive before yielding consistent

results.

For ARCSim, we enable adaptive remeshing and list the final mesh resolution

in Table 2.1. ARCSim requires specification of additional parameters, including most
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notably a minimum triangle size, which significantly affects the quality of the solved

static shape. We set frame time to 0.04s, frame steps to 8, and end time to 40s; for

the minimum triangle size, we try 0.01m, then 0.005m and finally 0.001m, accepting

the first result in which the wrinkles are not aliased. Note that we do not report

ARCSim results for the inflated structures, since ARCSim does not implement a

pressure force. For the other examples, we disable the ARCSim “popfilter” module,

as well as the “collision” module for examples without collisions.

Timing Comparisons Computation of the TFW base mesh is now reduced via our

choice of TFT and quadratic bending to an entirely convex problem on a coarse mesh.

Similarly, computation of the wrinkle field is then likewise a small, sparse optimization

of our discretized wrinkle energy subject to sparse curl-constraints and simple bound

constraints on the amplitude degrees of freedom. In our experiment, the reduction

in mesh resolution directly translates into reduction in computational cost, when

comparing TFW to traditional solvers. That said, apples-to-apples comparisons are

not straightforward: unlike for the resolution experiments above, timing comparisons

depend significantly on the low-level implementation details of both our method and

the baselines. Moreover, it is not clear how to determine a termination condition

that is consistent across all methods: gradients with respect to vertex positions, and

with respect to wrinkle field variables a and ω, have different units and cannot be

compared.

Despite the above difficulties, we provide some timing data in Table 2.1. For

each experiment that does not involve collision response4, we run TFW and StVK

for 1000 SQP iterations, or until the residual infinity norm is below 10−6, whichever

comes first. For both methods, 1000 iterations is far more than necessary to reach a

visually-stable static shape. We visually inspect the intermediate configurations and

4We do not perform timing comparisons for the examples involving contact, since our (very naive)
contact solver is very slow and dominates the cost of both the TFW and StVK optimizations.
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select the earliest iteration where the solution matches the visually-stable shape; the

wall-clock time of this iteration is listed as the stable time in Table 2.1. We use the

TFT base mesh as the initial guess for both TFW and StVK (and the timings in the

table do not include this preprocessing step); the time needed to compute the initial

guess is negligible compared to the subsequent solve times. See Appendix A.5.1 for

timing numbers.

Although inherently subjective, this methodology allows us to give some sense

of the relative performance of TFW versus baselines, and we observe that the manually-

selected visually-stable frame matches a “dogleg” in each example’s stationarity resid-

ual plots. See Appendices A.5.2 and A.5.3 for additional data and residual plots for

all examples listed in the table. We observe that TFW offers a speedup ranging

from 1.28x (for the torus) to 345.1x (for the stretched sheet experiment) compared to

StVK. For all the experiments, TFW succeeds in reaching a visually-stable wrinkled

shape within one minute.

Since commerical shell solvers like ABAQUS emphasize accuracy and gen-

erality over performance, and since we are not aware of any established computer

graphics software for shell statics, we used our own implementation of Morley shell

elements (based on the implementation hints provided by Grinspun et al. (2003) and

Weischedel (2012); see Appendix A.1) as the StVK baseline. We made best-effort

optimizations to improve performance of both the TFW and StVK algorithms; in

both cases the majority of the time spent each iteration is in the third-party solver

(NASOQ Cheshmi et al. (2020)) in the case of TFW, and SuiteSparse’s parallel im-

plementation of supernodal sparse Cholesky decomposition Chen et al. (2008) in the

case of StVK ). See Appendix A.5.1 for more information including data about the

timing breakdown within each optimization iteration.

Finally, in Figure 2.22, we visualize the progress of the TFW and StVK solvers

on a wall-clock time axis, to give an equal-effort comparison of the two methods. On

the timeline (which is in log scale) we indicate the range of times during which each
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simulation has not yet reached a visually-stable state in red. The visually-stable time

(as listed in Table 2.1) corresponds to the transition on the timeline from red to

blue. In cases where we terminate a simulation early, due to having reached very

low stationarity residual (10−6), the termination time corresponds to the transition

from blue to green. We show representative stills of each simulation; each still was

sampled at the wall clock time of its left edge. Please see Appendix A.5.3 for raw

data and discussion of the blue-to-green transition, and the result videos showing a, ω

(for TFW) and vertex displacement (for StVK ) versus wall clock time.

Models
StVK ARCSim TFW

#verts #iter stable time (s) #verts #verts #iter stable time (s)
sphere drape — — — 32k 1.6k− 30 11.08
symmetric dress 40k — — 8k 1.4k 20 8.18
asymmetric dress 52k− — — 13k 3.4k 30 23.19
pants 60k− — — 15.8k 4k 25 38.94
stretched sheet 260k+ 13 886.80 11k 522− 13 2.57
sheared rectangle 20k+ 220 673.11 13k 1k− 50 9.63
torus 40k 7 57.29 — 2k 55 44.81
balloon 40k 10 76.52 — 5k 30 52.33
teabag 30k 24 148.37 — 936− 13 1.98
teddy 98k 10 251.91 — 2k− 75 26.29
twisted cylinder 96k+ 120 1528.68 68k 688 400 50.94

Table 2.1: Timing and resolution information for the examples we show in this chap-
ter. Reported mesh resolutions are generally the coarsest-possible that do not exhibit
degradation of the wrinkle shape; see main text for details of the methodology. A
superscript − means that the lowest-resolution mesh we tried produced good results
(so that the true minimum-required resolution might be lower); a superscript + indi-
cates that the highest-resolution mesh we tried (listed in the table) failed to produce
acceptable results after one week of simulation; we did not continue to probe higher
resolutions for these examples. We did not simulate the inflatable structures using
ARCSim as the simulator does not include a pressure model. For examples that do
not involve contact, we also report timing information for TFW and StVK. We list
the iteration number and wall-clock time for when each simulation converges to a
visually-stable result (see main text for methodology).

2.7 Conclusion, Limitations, and Future Work
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TFT base mesh TFW StVK MD ARCSim ARCSim wireframe

Figure 2.14: An asymmetric dress draped over a mannequin. The first row shows the
front view of the dress after simulation and the second row shows the back view of
the same dress. From left to right: the 3.4k-vertex base mesh, simulated using TFT ;
the simulated wrinkled shell using TFW on that base mesh; the result from StVK on
a Delaunay mesh with 50k vertices; the result from MD on a 50k-vertex mesh; the
result from ARCSim, with adaptive remeshing enabled; a wireframe rendering of that
same ARCSim result (the mesh has 13k vertices). For StVK and MD, we tuned mesh
resolution to be about as coarse as possible without causing significant degradation
in the wrinkle pattern.

We have introduced TFW, a new model and algorithm for high-fidelity mod-

eling of wrinkling thin shells suitable for low-resolution computational meshes. The

key insight is that by decoupling the wrinkled shape into slow and fast variables, and

deriving an approximate elastic energy in terms of the slow amplitude and frequency

variables, high-resolution, physically-principled detail can be added to a wrinkle-free

coarse mesh without aliasing. We have demonstrated TFW ’s ability to generate re-

alistic and often predictive results across a wide range of challenging examples with

an order-of-magnitude less degree of freedoms and speedups of between 1.28x and

345.1x compared to traditional finite elements.

Although our solver implementation in Section 2.5 serves as proof of concept

for applying wrinkle fields as a new approach to static simulation of fine wrinkling,
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TFT base mesh TFW StVK MD ARCSim ARCSim wireframe

Figure 2.15: A mannequin wearing simulated pants. The first row shows the front
view of the pants after simulation and the second row shows the back view of the
same pants. From left to right: a 4k-vertex base mesh, simulated using TFT ; the
simulated wrinkled shell using TFW on that base mesh; the result from StVK on
a Delaunay mesh with 60k vertices; the result from MD on a 60k-vertex mesh; the
result from ARCSim, with adaptive remeshing enabled; a wireframe rendering of that
same ARCSim result (the mesh has 15k vertices). For StVK and MD, we tuned mesh
resolution to be about as coarse as possible without causing significant degradation
in the wrinkle pattern.

many avenues of future work remain before a wrinkle-field approach is industry-ready

as a practical replacement for the current, triangle-element-based approach:

Performance. This chapter largely focused on foundational theory, rather than

low-level performance optimization (nevertheless, in the experiments of Section 2.6.5

we were able to achieve significantly faster performance with TFW compared to base-

line StVK, due to the vastly coarser mesh needed by TFW). To compete with com-

mercial GPU-based cloth solvers, TFW would need additional performance improve-

ments. The performance bottleneck for TFW (see Appendix A.5.1 for a breakdown)
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TFT base mesh TFW StVK MD ARCSim ARCSim wireframe

Figure 2.16: A symmetric dress draped over a mannequin. The first row shows the
front view of the dress after simulation and the second row shows the back view of
the same dress. From left to right: a 1.4k-vertex base mesh, simulated using TFT ;
the simulated wrinkled shell using TFW on that base mesh; the result from StVK
on a Delaunay mesh with 40k vertices; the result from MD on a 40k-vertex mesh;
the result from ARCSim, with adaptive remeshing enabled; a wireframe rendering
of that same ARCSim result (the mesh has 7.8k vertices). For StVK and MD, we
tuned mesh resolution to be about as coarse as possible without causing significant
degradation in the wrinkle pattern.

is the SQP solve for amplitude and frequency (Section 2.5.2); at a mininum, a high-

performance implementation of TFW would need to use a parallelized QP solver on

the GPU instead of the CPU-based NASOQ library. Other potential optimizations

include starting from a better initial guess for amplitude and phase (based on addi-

tional analysis of the physics of wrinkling, or provided by a data-driven approach),

simplifying the discretization of the reduced-order elastic energy (for example, by

replacing three-point quadrature of the integrals in Equation (2.30) with simpler ex-

pression derived using Discrete Exterior Calculus), or replacing our SQP strategy for

minimizing elastic energy with a different optimization strategy.
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Delaunay mesh Upsampled mesh Downsampled mesh Nonuniform mesh

Figure 2.17: A symmetric dress draping over a mannequin in terms of different trian-
gulation, but similar mesh resolution (1.7k± 0.3k vertices). The first row shows the
front view of the dress after simulation and the second row shows the back view of the
the same dress. From left to right: TFT simulated result of a 1406-vertex Delaunay
mesh. The corresponding wrinkled shape using our wrinkled-field model on that base
mesh; TFT simulated result of a mesh with 1399 vertices. This mesh is generated
by Loop upsampling a lower resolution Delaunay mesh. The corresponding wrinkled
shape using our wrinkled-field model on that base mesh; TFT simulated results of a
mesh with 1959 vertices, downsampled from a higher resolution Delaunay mesh (keep-
ing the stitching boundary unchanged). The corresponding wrinkled shape using our
wrinkled-field model on that base mesh; TFT results of the mesh extracted after
one-step arcsim remeshing process with 1981 vertices. The corresponding wrinkled
shape using our wrinkled-field model on that base mesh. Our wrinkled-field model
yields a consistent final result with respected to these different triangulation.

Two-way Base Surface-Wrinkle Field Coupling. We derived an approximated

elastic energy Ewf (Equation (2.27)) that involves both a base surface rb and wrinkle

field variables a, ω. In this chapter, we solve first for the base surface using tension

field theory (TFT ), and then fix this surface and optimize independently for the

wrinkle variables. A natural question is whether the TFT base mesh is truly optimal

in terms of minimizing Ewf . As we can see from Fig. 2.19, in some cases it is clear

that the TFT solution does not “puff out” enough: the wrinkling of the draped cloth

corregated the surface, which in turn penalizes bending of the cloth perpendicular

to the wrinkles, near where the cloth breaks contact with the sphere, so that the
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382 vertices 711 vertices 1.4k vertices 2.6k vertices

Figure 2.18: Simulations of a draped dress with different mesh resolutions using our
TFW model. The wireframe figures to the left of each image pair show the base
mesh; the red meshes are the final results. Notice that TFW yields a consistent
wrinkle pattern when the resolution reaches around 1.4k vertices.

draped cloth has a more conical than cylindrical coarse shape. As discussed earlier,

jointly optimizing Ewf for both rb and a, ω does not work, since Ewf assumes that the

base surface strain and curvature are slow variables, which is no longer necessarily

true if rb is allowed to vary arbitrarily. One idea might be to parameterize rb using

differential coordinates, a low-resolution subdivision surface, or some other space of

deformations that ensures the base surface strain and curvatures stay slow. Another

potential approach to two-way coupling would be to alternate solving for rb and the

wrinkle field, where an “effective” rest curvature is computed for rb based on the

current wrinkle field at each iteration.

Other Base Surface Limitations. Even when using TFT to compute the base

surface, sometimes the base surface mesh can have large variations in strain, or de-

fects such as inverted or collapsed triangles, which can cause TFW to struggle. For

example, the relatively slow performance of TFW on the inflated torus example is due

to high noise in the amount of compression in the corresponding base mesh. The root

cause of this noise is that TFT has multiple possible solutions in regions of compres-
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sion. For example, if a square piece of cloth is compressed in the horizontal direction,

both the deformation where the entire cloth has equal compression strain (desirable),

and the deformation where only a thin vertical column of the cloth compresses while

the rest of the cloth translates isometrically (undesirable), are minimizers of the TFT

energy. The quality of the TFT base surface might be improved by adding some reg-

ularization terms to the TFT energy, or by incorporating two-way coupling of the

base surface with the wrinkle patterns, as discussed above.

Phase Ambiguity. Our approach computes wrinkle amplitude and frequency, and

then solves for phase ϕ as a post-process, with dϕ = ω. This recovery procedure can

determine phase only up to a global phase shift, ϕ → ϕ + k; this shift cannot be

determined from the wrinkle field. For statics problems the shift is unimportant, as

it affects the precise wrinkled geometry, but not coarse-scale features of the wrinkled

surface such as wrinkle orientation, amplitude, and frequency. The phase shift ambi-

guity does mean that the wrinkled surface rw cannot be used to measure convergence

of the wrinkle field optimizations, in experiments such as we did in Section 2.6.5. Any

use of wrinkle fields for dynamics would also need to account for this phase ambiguity

across time, as otherwise, sudden changes in the global phase shift would be perceived

as “popping” in animations.

Dynamics. This chapter considers only shell statics. Extending TFW to dynamics

is a natural follow-up direction; the simplest approach would be to animate the base

mesh and then add wrinkles quasi-statically. The main new feature needed for such

quasi-static simulation is a method for solving for a temporally-coherent global phase

shift in ϕ at each time step (see previous point) so that wrinkles appear to change

smoothly over time. More interesting, and more challenging, would be to equip the

wrinkles themselves with inertia, and implement two-way coupling of the wrinkles

and base mesh (see above).
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Collisions. We currently consider only collisions of the TFT base mesh against

the environment. There are many interesting directions for future work improving

collision handling of wrinkled surfaces, such as taking into account collisions when

solving for the wrinkle field (so that wrinkles in contact with other objects have

flattened shape), detecting and resolving self-contact of the wrinkled surface (where

rw self-collides but rb does not), anisotropic friction models that account for the

wrinkling direction and amplitude when a wrinkled surface slides against another

object, etc. Most of these future directions will first require research into handling

two-way coupling of the base surface and the wrinkle field (see above).

More General Constitutive Models. Real-world textiles are woven or knitted,

and obey macroscopic constitutive laws that are far more complex than the StVK

isotropic material we assume in our derivations. Theoretically, there is no obstruction

to extending our derivation in Section 2.3 to other constitutive laws. For orthotropic

or anisotropic linear materials, the St. Venant-Kirchhoff material norm ∥ · ∥SV would

need to be replaced by a different quadratic norm, new expressions for the in-plane

correction terms (Equation (2.16); see also Appendix A.3 and Equation (A.6)) would

need to be derived for the new norm, and the in-plane energy term (Equation (2.22))

updated accordingly. In our derivation we exploited symmetries of the STVK material

norm to simplify these calculations, and for other constitutive models, the correspond-

ing equations may be less pleasant. Nonlinear materials would require more extensive

rederivation, while still following the roadmap we sketch in Section 2.3. However, we

suspect general nonlinear constitutive models would produce results that differ little

from those of their linearizations, since all hyperelastic material models reduce to an

(isotropic or anisotropic) linear material in the small-strain limit, and note that in

regions of wrinkling, the strain in the compression direction is typically small since

most of it has been relieved by buckling.
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More General Wrinkling Model. Several of our modeling decisions in Section 2.3

might be revisited and extended in future work: for instance, we assume a single

predominant wrinkling frequency at each point on the shell, and while this assumption

appears to hold in physical experiments, we do know that near boundary layers, real-

world shells often exhibit a second, finer frequency of wrinkling (see the sheared

rectangle experiment in Figure 2.8 for instance). One could also explore more general

expressions for the wrinkling waveform, for instance by adding additional frequencies

to ft, or changing the normal displacement from a cosine wave to other shapes such

as sinc waves Evgeny and Harders (2019).

Injecting Noise and Asymmetry. In some examples, such as the sphere drape

(Figure 2.19) and the inflated structures, the TFW wrinkles can look “too symmet-

ric” compared to wrinkles in real materials, where imperfections and defects break

symmetry. Real wrinkles often also collapse under gravity and fold on themselves

(noticeable for the sphere drape, in particular), phenomena we do not attempt to

model in this chapter. In future work, post-processing could be done on the wrinkle

field to emulate these effects, while maintaining the correct wrinkle frequency and

amplitude.
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TFT base mesh

Amplitude a

Our (TFW) result

Phase ϕ

ARCSim result

MD result

TFW with v2 = 0

Amplitude, no relaxation

TFW, no relaxation

Phase, no relaxation

Figure 2.19: Draping a square piece of cloth on a sphere. Left : the base surface rb,
after optimization using TFT and Quadratic Bending, on a domain with 1.6k ver-
tices, the surface after we optimize and visualize a wrinkle field on this base surface,
and a visualization of the computed amplitude and phase fields a, ϕ over rb. Black re-
gions are where wrinkles don’t exist and the phase is undefined. Middle: comparison
to simulation results from two standard cloth solvers, ARCSim and MD (Marvelous
Designer). To capture all detailed wrinkles, a high resolution simulation mesh was
needed (here we use 72k vertices). Right : Some ablation experiments on this exam-
ple. Here we show the unnatural undulations produced when visualizing the same
amplitude and phase fields as in the bottom-left subfigures, but applying only normal
displacement (v2 = 0). We also show the disastrous consequences of failing to relax
the integrability constraints on ω on pure-tension faces. The recovered amplitude a
and phase ϕ are not the expected smooth, periodic solution since without relaxing
integrability near the north pole of the sphere, it is mathematically impossible for an
ω to circulates around the circumference of the draped portion of the cloth.
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Adaptive Remeshing 2.6k vertices 5.2k vertices 10k vertices 20k vertices 40k vertices

StVK

ARCSim

StVK

ARCSim

Figure 2.20: We simulate the draping of a dress with different mesh resolutions,
using StVK and ARCSim (with (left column) and without (second and fourth row)
remeshing). The heading of each column indicates the mesh resolution of that column.
The simulations appear to converge at about 20–40k vertices for each solver.
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ARCSim TFW StVK
Adaptive Fixed Mesh experiments Resolution experiments Irregular Regular (↖)Regular (↗)

Wireframe 6k, 10 1309, 46 180, 46 6k, 10 6k, 72 6k, 12

69k, 32† 12k, 12 960(↖), 39 344, 46 12k, 12 12k, 24 12k, 12

†: rough estimate
24k, 13 960(↗), 40 688, 47 24k, 14 24k, 68 24k, 20

48k, 16 1080(↖), 38 1309, 46 48k, 15 48k, 36 48k, 16

96k, 17 1080(↗), 40 2543, 45 96k, 19 96k, 48 96k, 20

Figure 2.21: Our results for the twisted cylinder experiments. Numbers below figures
are (resolution, # wrinkles); for the adaptive ARCSim simulation, wrinkle count is
a rough estimate as the irregularity of the wrinkles precludes an exact count. The
symbols (↖) and (↗) indicate use of a regular mesh with edges aligned along and
against the wrinkles, respectively.
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StVK

TFW

StVK

TFW

StVK

TFW

StVK

TFW

StVK

TFW

StVK

TFW

StVK

TFW

0s 10s 20s 40s 80s 160s 320s

visually stable converged

Figure 2.22: Comparisons of our TFW algorithm and the baseline StVK simulations
against wall clock time, on a log scale. Each rendered result is sampled at time
corresponding to the image’s left edge. Background color indicates current state of
each simulation: light red indicates the simulation has not yet reached a visually-
stable state, light blue indicates the simulation has become visually-stable, and light
green means the solver has terminated due to having small stationarity residual. The
boundary between colors correspond to the transitions between these three states, on
the wall-clock-time axis. Note that the transitions between red and blue are exactly
the times listed in Table 2.1.
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Chapter 3: Complex Wrinkle Field Evolution1

Singularity Singularity

Upsample Upsample

Consistent Consistent

Amplitude a0

Frequency ω0

Phase arg(z̃0)

Amplitude a1

Frequency ω1

Phase arg(z̃1)

t=0 t=0.2 t=0.4 t=0.6 t=0.8 t=1

Initial frame Keyframe interpolation Target frame

Figure 3.1: We propose Complex Wrinkle Fields (CWF s), a new discrete wrinkle
model that enables the resolution of highly detailed wrinkle patterns on coarse base-
mesh geometry. The CWF representation consists of a positive number a per vertex
encoding the wrinkle amplitude, a one-form ω per edge to model wrinkle frequency,
and a complex number z̃ per vertex to represent wrinkle phase, coupled via a weak
variational consistency condition ensuring that z̃ can capture singularities while also
being as compatible with ω as possible (Section 3.3.1). We equip the CWF represen-
tation with a novel temporal interpolation algorithm (Section 3.4) and a spatial up-
sampling method (Section 3.5) that together allow for smooth interpolation between
wrinkle patterns represented on surfaces by CWF s (leftmost and rightmost column),
and base-mesh-independent rendering of arbitrarily high-resolution wrinkle patterns.
Together these contributions make it possible to smoothly evolve wrinkle patterns be-
tween two prescribed keyframes (middle columns) with automatic merging, splitting,
and reconnection of wrinkles as necessary via smooth sliding of singularities across
the surface (zoomed-in figures in middle columns). Please check the Interpolation
Results extra video (00:38–00:53; note this is an additional video separate from the
main supplemental video) for the corresponding wrinkle animation.

We propose a new approach for representing wrinkles, designed to capture com-

plex and detailed wrinkle behavior on coarse triangle meshes, called Complex Wrinkle

Fields. Complex Wrinkle Fields consist of an almost-everywhere-unit complex-valued

1This chapter is modified from Chen et al. (2023a). Please refer this webpage for details. All the
videos mentioned in this Chapter can be found here
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phase function over the surface; a frequency one-form; and an amplitude scalar, with

a soft compatibility condition coupling the frequency and phase. We develop al-

gorithms for interpolating between two such wrinkle fields, for visualizing them as

displacements of a Loop-subdivided refinement of the base mesh, and for making

smooth local edits to the wrinkle amplitude, frequency, and/or orientation. These al-

gorithms make it possible, for the first time, to create and edit animations of wrinkles

on triangle meshes that are smooth in space, evolve smoothly through time, include

singularities along with their complex interactions, and that represent frequencies far

finer than the surface resolution.

3.1 Introduction

Across widely ranging spatial and temporal scales, wrinkles on surfaces are a

fundamental geometric structure. We encounter these structures in our daily inter-

actions with the moving folds and creases in cloth, skin and films, and likewise, we

regularly observe them in natural phenomena such as the slow evolution of sand dunes

and the rapid rippling of shallow water. Wrinkles on surfaces thus critically enrich

otherwise coarse geometric structures with important visual details, while manufac-

tured wrinkle patterns enable the design of complex structures and material behav-

iors Lähner et al. (2018b); Evgeny and Harders (2019); Chen et al. (2021b).

The real-world examples illustrated in Figure 3.2 demonstrate the character-

istic and highly complex features of surface wrinkling behaviors in the wild. Locally,

wrinkles are generally characterized by a dominant frequency and amplitude, both of

which vary inhomogeneously but smoothly over the surface. At the same time sin-

gularities punctuate wrinkle patterns (see e.g. circled regions in Figure 3.2). These

singularities are the branch points of the phase field where multiple peaks and troughs

join together. Near these singularities wrinkles are fundamentally non-bandlimited :

as we approach a singularity, circulating an arbitrarily small distance around it results

in an arbitrarily large shift in phase. Figure 3.2, bottom row, shows several frames of
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Photo courtesy Flickr user: nevil zaveri Photo courtesy Flickr user: Chris

Twisting sleeve

Figure 3.2: Wrinkles on surfaces are ubiquitous, from sand dunes (top-left) to the
creases and folds on a wrinkly dog face (top-middle) and a bean bag chair (top right).
Notice that several key features are evident in all of these examples: frequency and
amplitude that vary smoothly over the surface, punctuated by singularities (we circle
some examples in aqua) where frequency diverges, amplitude vanishes, and multiple
wave crests and troughs commingle in a Y-like pattern. In the bottom row, we show a
sequence of wrinkle patterns formed during the twisting of a cloth shirtsleeve, where
the singularities appear, merge and slide during the pattern’s evolution.

wrinkle evolution during twisting of a sleeve of a cloth. Singularities appear, merge,

and slide over the surface as wrinkles shift, split, and reconnect during their evolution.

In the smooth setting (see Section 3.2.1) wrinkles have an appealing and com-

pact representation as amplitude and phase signals-on-surface; on the other hand the

above characteristic features pose significant modeling challenges when it comes to

discretizing and evolving wrinkles on triangle meshes. In this work we address these

challenges.
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3.1.1 Contributions

First, because the evolving singularities and high-frequency wrinkles in fine

wrinkle patterns are generally not captured at practical mesh resolutions, we construct

a discretization of wrinkles called the Complex Wrinkle Field (CWF ) that captures

in-element singularities and multiple sub-element wrinkling periods (Section 3.3). The

CWF representation enables mesh-independent resolution of fine wrinkles.

Second, to enable smooth design, editing, control, animation, and evolution

between wrinkle patterns we construct a mechanics-based algorithm for continuous

and temporally-coherent interpolation between arbitrary wrinkle patterns on surfaces

(Section 3.4). Our algorithm takes as input two CWF endpoints (“keyframes”) and

solves a boundary value problem approximating a geodesic path in the space of inex-

tensible shells. The results are complex, shifting wrinkle patterns, where singularities

evolve automatically to support the necessary branching and merging of wrinkles

needed to interpolate between the keyframed patterns.

Third, to complement CWF ’s ability to model sub-element wrinkle resolution,

we derive a new subdivision method that maps CWF s on triangle meshes to amplitude

and phase on vertices generated by Loop iterates (Section 3.5). This method resolves

arbitrarily fine wrinkled geometry, including singularities, while avoiding artifacts

seen in existing baselines (see Section 3.5.3) and so provides high-quality upsampling

of wrinkles for rendering and other downstream applications.

We extensively evaluate each of these contributions relative to state-of-the-art

alternatives, and then demonstrate their joint application to animating wrinkle evo-

lution on triangle surfaces, and to smooth, user-in-the-loop wrinkle editing (including

both local and global manipulations). Across these applications we show that our

contributions account for evolving singularities while generating smooth and intu-

itive interpolants between wrinkle patterns (Section 3.6). For example, in Figure 3.3

(bottom row), we show that, with proposed techniques, we can generate wrinkles with

the double frequency and half of amplitude of the simulated results obtained from
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Chen et al. (2021b)— effectively replacing thick cloth with thinner, silkier material

without re-simulation. Furthermore, we can swipe through a smooth interpolation of

the wrinkle patterns to select the desired look.

Despite the prominence of evolving wrinkles in the natural world, we emphasize

that to date there is nomodel or method that supports temporal wrinkle interpolation

on surfaces (in the sense of computing a path of spatially- and temporally-continuous

wrinkle patterns between prescribed keyframes). Our CWF representation and algo-

rithms are the first designed from the ground up to address the challenges imposed

by evolving singularities during wrinkle interpolation. These challenges are gener-

ally unavoidable, even when the underlying surface and the prescribed keyframes are

simple. For example, consider the torus interpolation in Figure 3.3 (top row) and

in the supplementary Interpolation Results video at 00:02–00:19. Although nei-

ther keyframe contains singularities, it is topologically impossible to follow a smooth

path between them without introducing (and then annihilating) singularities along

the way.

In summary, Complex Wrinkle Fields (CWF ) make it possible, for the first

time, across all wrinkle inputs, to create, edit, and animate detailed wrinkles on

triangle meshes that are smooth in space and evolve smoothly through time; while,

at the same time, implicitly including the complex interactions of singularities, and

resolving wrinkle frequencies far finer than the surface mesh resolution. Raw data

and a reference implementation of our algorithms, can be found in this webpage. The

latest version of the code can also be found on GitHub2.

2https://github.com/zhenchen-jay/Complex-Wrinkle-Field.git
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t=0 t=0.25 t=0.5 t=0.75 t=1.0

Figure 3.3: Two examples of CWF interpolation between keyframes specified at t = 0
and 1. Top row: a torus, with wrinkles keyframed to rotate by ninety degrees; bot-
tom row: a dress example from Chen et al. (2021b) (our TFW Section 2), where
we emulate replacing the cloth with a thinner material by uniformly doubling the
wrinkle frequency and halving the amplitude. For the rotating torus example, al-
though neither keyframe contains singularities, it is topologically impossible to follow
a smooth path between them without introducing (and then annihilating) singulari-
ties along the way. Here our CWF interpolation allows wrinkles to break apart before
reconnecting again. The dress demonstrates the possibility of using our algorithms
to reasonably edit physical wrinkles and generate corresponding smooth animation.
Videos of these two examples can be found in the Interpolation Results supple-
mentary video at 00:02–00:19 (for the torus) and 03:47–04:03 (for the dress).

3.2 Preliminaries and Related Work

3.2.1 Wrinkles on Surfaces

Smooth Setting A useful Knöppel et al. (2013, 2015) representation of wrinkles

on smooth manifolds M is by a single complex smooth function z : M→ C, where the

wrinkle amplitude a is encoded as |z|, and the associated phase as θ = arg(z). Here

we assume wrinkles are normal displacements of M with magnitude a cos θ = ℜ(z).

The smoothness of z guarantees a smooth non-negative amplitude, and a smooth

associated phase, except at a set of singular points where z = 0 and along branch
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cuts between them. At these singular points the phase is undefined and the amplitude

vanishes. Away from these singularities, the derivative of phase yields the (one-form-

valued) wave frequency ω = dθ. It is important to note that the frequency field

singularities are not the usual ones studied in geometry processing where ω = 0;

rather, here ∥ω∥ → ∞ as one approaches a singularity.

Discrete Setting Frequency and amplitude are the semantically-meaningful pa-

rameters for encoding the wrinkling phenomena discussed in Section 3.1 and shown

in Figure 3.2. Our goal then is to translate the above spectral representation of wrin-

kles from the smooth setting to triangle meshes T = {v, e, f}. As we motivated in

the last section, a practical discretization of z on a triangulation by a set of discrete

parameters u should satisfy three basic desiderata:

1. The parameters u must allow for singularities; i.e., it should be possible to

reproduce wrinkle patterns with branch points as illustrated in Figure 3.2.

2. High frequency wrinkling should be representable independent of the resolution

of the underlying triangle mesh, and in particular, wrinkles should be allowed

much more than a single period within a triangle. This decoupling (the main

motivation for a spectral representation of wrinkles) is needed both because fine

wrinkle patterns are common in the real world (as in the skin and cloth images

in Figure 3.2) and because high frequencies are unavoidable in the vicinity of

singularities.

3. We must be able to render a smoothly wrinkled, high-resolution surface for all

valid u, and this surface geometry must change continuously for continuous

changes in u. This requirement represents a minimum foundation for doing

temporally-coherent wrinkle interpolation.

Surprisingly, given how straightforward it is to represent wrinkles in the smooth set-

ting, the most direct strategies for discretizing z (e.g., storing a complex number zi on
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each vertex) do not meet the above requirements, as we discuss shortly; constructing

the right discrete representation to support temporal interpolation is a challenge in

its own right. After reviewing related work we will present our discrete CWF model

in Section 3.3, and compare with some natural alternative choices of discretization

and demonstrate their shortcomings.

3.2.2 Prior Work

Spectral Representations of Wrinkles on Surfaces Prior work has recognized

the significant challenges in representing wrinkles on triangle meshes, and has offered

a range of partial solutions. A common approach Chen et al. (2021b); Aharoni et al.

(2017); Paulsen et al. (2016) is to design for the wave frequency without regard

to phase, using vector-field design tools from geometry processing; when phase is

required (e.g., for rendering), it is recovered as a post-process by solving for the

phase whose gradient most closely matches the frequency: either via least-squares

optimization, or using techniques from the parameterization literature Ling et al.

(2015); Diamanti et al. (2015); Ray et al. (2006); Zhang et al. (2010). Knöppel

et al. (2015) propose a particularly powerful variation of this idea: their algorithm

solves for a stripe pattern (phase field) over arbitrary surfaces given a user-provided

vector field, where singularities are placed at the centers of the triangles as needed

to produce topological dislocations in the pattern. Noma et al. (2022) build on

this technique by allowing users to interactively edit the location of singularities

in stripe patterns. Beyond designing stripe patterns, Knöppel et al.’s algorithm has

been applied for real-time surface parameterization Lichtenberg et al. (2018) and

continuous fiber design Boddeti et al. (2020).

While these “frequency-first” strategies can produce beautiful, high-frequency

wrinkle patterns on surfaces, they all suffer from a key limitation: smooth change in

frequency does not yield a smooth change in phase. These strategies are therefore

unsuitable for smooth animation of wrinkles due to temporal incoherence: they will

produce a temporally discontinuous phase sequence, even when the input frequency
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sequence undergoes a smooth temporal evolution. For example, in the main sup-

plementary video (02:59–03:44) and the Comparisons video (00:05–00:59), we show

an animation of rotating waves on a torus, where we apply the method described by

Chen et al. (2021b) and Knöppel et al. (2015) to every frame. Although the individual

frames are spatially smooth, they are not temporally coherent.

Vector Field Design Over decades, many methods have been developed for vector

field design. Vaxman et al. (2016) and de Goes et al. (2016b) summarize the classical

ways to design and discretize vector fields on triangle meshes. In general, there

are several ways to represent discrete vector fields. One popular approach specifies

each vector with respect to a local Cartesian or polar coordinate system Knöppel

et al. (2013); Diamanti et al. (2014). This representation is agnostic to singularities

and well-suited for methods that automatically place them Bommes et al. (2009);

Panozzo et al. (2014); Ray et al. (2009); Diamanti et al. (2015); Jakob et al. (2015).

However, enforcing global integrability of the vector field in this representation is

difficult and requires non-linear constraints or integer variables. Another approach

represents vector fields implicitly in terms rotation angles on dual edges Li et al.

(2006); Ray et al. (2008); Crane et al. (2010). This representation is particularly

useful for parameterizing vector fields while maintaining full control over singularity

placement and index Fisher et al. (2007); Zhang et al. (2006); Solomon and Vaxman

(2019) but integrability is even more elusive: two levels of integrability constraints

are required (one for integrating the angles to well-defined vectors and another for

integrating the vectors to a well-defined scalar field). As we discuss in Section 3.3,

neither of these representations are suited for representing temporally-coherent, high-

frequency wrinkle fields with moving singularities on discrete triangle meshes.

Vector Field Subdivision Subdivision operators have been designed that extend

Loop subdivision to one-forms on triangle mesh edges de Goes et al. (2016a); Wang

et al. (2006). We will use this scheme as a part of our approach (Section 3.5.1).
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Custers and Vaxman (2020) designed a subdivsion scheme for tangent directional

fields on triangle faces. However, these methods do not cover the corresponding

subdivision of amplitude and phase, which are essential for upsampling wrinkles.

Vector Field Temporal Interpolation Temporally interpolating vector fields

has long been studied in geometry processing. Zavala-Hidalgo et al. (2003) inter-

polate high-frequency vector wind fields by decomposing these fields into a basis of

empirically-derived orthogonal functions, and then interpolating eigenmodes in time.

Chen et al. (2012) propose a framework for designing time-varying vector fields by

solving a spatial-temporal Poisson problem; their method implicitly generates bifur-

cations and singularities in the vector field. Sato et al. (2018) propose an algorithm

that takes two entire time sequences of velocity fields and produces time sequences

that blend between them. Solomon and Vaxman (2019) use optimal transport theory

to match the singularities in two input vector fields, which allows for their direct inter-

polation. However, vector field interpolation, on its own, does not solve the problem

of interpolating wrinkles, where the phase and amplitude must also be interpolated,

and, as discussed above, there is no obvious way to recover temporally-coherent phase

from frequency.

Spectral Wrinkle Evolution There are several methods for simulating spectrally-

represented wrinkles forwards through time from an initial state: in a line of work,

Jeschke, Wojtan, and collaborators Jeschke and Wojtan (2015, 2017); Jeschke et al.

(2018) propose several approaches to efficiently evolve water waves based on Airy

wave theory Airy (1842), which uses a sum of sinusoidal functions to linearly approx-

imate the motion of surface waves on the body of water. Evgeny and Harders (2019)

simulate wrinkle motion on 3D surfaces via reaction-diffusion Turk (1991); Witkin

and Kass (1991). Although these approaches generate animations of wrinkles given

initial conditions (initial value problem), they do not address the wrinkle keyframe

interpolation problem, which is completely different (boundary value problem).
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Shell Geodesics Heeren et al. (2012) propose a way to find the geodesic between

two thin shells based on the minimization of strain dissipation. This idea is fur-

ther explored for time discretization of geodesic calculus on certain Riemannian

manifolds Rumpf and Wirth (2014), understanding the geometry of the space of

shells Heeren et al. (2014), or finding geodesics between two general elastic shapes

Ezuz et al. (2019); Sassen et al. (2020). Von-Tycowicz et al. (2015) adopt a simi-

lar idea and design a special subspace optimization problem to interpolate between

elastic body poses in real time. Our wrinkle interpolation algorithm follows in the

footsteps of these methods.

Surface Augmentation Methods have also been proposed to augment coarse sur-

faces with fine wrinkles as an alternative to expensive, fine-scale physical simulation.

Indirect techniques have been proposed for upsampling cloth Bergou et al. (2007a);

Wang (2021) and skin Rémillard and Kry (2013a) by simulating a higher-resolution

mesh that is constrained to stay close to an existing, coarse simulation. Rohmer et al.

(2010) and Gillette et al. (2015a) add fine wrinkle detail to coarse cloth simulations

by tracing compression direction fields in a temporal coherent manner. Cutler et al.

(2005) allow users to design wrinkle patterns on a set of reference poses, then add

weighted combinations of the designed wrinkles to each frame of simulation based on

local stresses. Data-driven methods for enriching coarse meshes with fine detail, for

example, by representing wrinkles as normal maps Lähner et al. (2018b) or displace-

ments Chen et al. (2018b, 2021a); Santesteban et al. (2019a); Zhang et al. (2021),

are likewise an active and rapidly evolving area of research but require significant

preprocessing and generally depend on a corpus of data.

3.3 Complex Wrinkle Field Discretization

In the smooth setting, a single complex function z suffices to represent a wrin-

kle pattern. Unfortunately, z admits no straightforward discretization that safisfies
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the properties listed in Section 3.2.1. In this section, we introduce our complex wrin-

kle field (CWF ) representation, the design decisions that motivate it, and some of the

pitfalls with alternative discretizations. In the following sections we will then discuss

how to both (a) temporally interpolate between CWF s and (b) upsample (and so

render) CWF s while preserving these properties.

High-level Summary There are three key design decisions that motivate CWF s:

• To represent high-frequency wrinkles on a mesh, unlike in the smooth setting, a

phase-based representation is insufficient. The discretization must additionally

track frequency.

• For the wrinkle representation to capture singularities, the frequency field can-

not be globally integrable in the usual sense of being the derivative of a real-

valued function, and cannot even be locally integrable near singularities. We

therefore eschew integrability entirely and allow arbitrary frequencies.

• Since frequency is not integrable, we cannot and should not exactly enforce that

frequency is the derivative of phase. But we also do not want phase and fre-

quency to be incompatible. We therefore require soft compatibility of phase and

frequency, in a way that is well-defined at singularities and enforces d arg(z) ≈ ω

away from singularities.

A CWF therefore consists of three sets of degrees of freedom: (1) a one-form ωjk on

the edges of T (representing the wrinkle pattern frequency); (2) a real scalar aj per

mesh vertex (representing the wrinkle amplitude); and (3) a complex number z̃j per

vertex (encoding the wrinkle phase). There are no constraints on the ωjk and aj, but

z̃ is required to be approximately unit and to satisfy a weak compatibility condition

with respect to ω. The reader immediately interested in the formal definition of a

CWF may skip to Section 3.3.1; in what follows we motivate and justify each of the

above decisions.
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Need for Both Frequency and Phase The most direct way to discretize z is

as a discrete function on the mesh vertices. The strength of this approach is that it

uniquely pins down the wrinkle amplitude |z| and wrinkle phase arg(z) at each vertex.

However, z alone is unable to represent wrinkles with high frequencies, as illustrated

in Figure 3.4: at most one wrinkle period per edge is possible, since the phase change

arg(zj)−arg(zi) across the edge is bounded by 2π. By contrast, a frequency one-form

ω can encode arbitrarily high frequencies independent of mesh resolution; however, a

discrete representation based on frequency alone is unsuitable for applications like ours

requiring temporal coherence, since wrinkle phase is underdetermined given frequency

alone.

A mixed representation that tracks both phase and frequency simultaneously

combines their advantages, and eliminates their disadvantages. This observation mo-

tivates a discrete representation that includes both a real-valued one-form ωij on the

mesh edges, and a complex number zj per mesh vertex. (In the CWF representation,

we further decompose zj into parts as zj = ajz̃j with aj, z̃j as our DOFs rather than

zj itself, for reasons we cover below.)

No Integrability Constraints on Frequency In the smooth setting, frequency

is defined as the derivative of phase. A natural question when discretizing frequency

is whether to require it, by analogy, to be (discretely) integrable. Several important

subtleties make doing so impractical. Note that, in the smooth setting, ω is not

globally integrable in the usual sense: ω is the exterior derivative of a section of

an S1-bundle over M-with-singularities-removed. The line integral of ω around a

singularity does not necessarily vanish and is instead a multiple of 2π. Requiring∮
ω = 0 around every closed curve in M would constrain the wrinkle pattern to

have no singularities. Similarly, in the discrete setting, if a triangle jkℓ contains a

singularity, the discrete curl on that triangle ωjk + ωkℓ + ωℓj does not vanish. Rather

than selectively enforcing integrability of ω on only some triangles (which would

require explicitly tracking which triangles contain singularities of which index using
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(a) Smooth wrinkles (b) Coarse arg z

(c) Upsampled coarse z (d) Incompatible CWF (e) Compatible CWF

Figure 3.4: We show different discretizations of a plane wave associated with z =
exp(3πix). (a): the exact wrinkle pattern z, visualized as a normal displacement with
magnitude ℜ(z). (b): we sample z onto a coarse mesh and plot arg(zj); the discrete
phase is badly aliased. (c): attempting to visualize the wrinkles by displacing each
vertex by ℜ(zj) yields a surface that bears no resemblance to the expected wrinkle
pattern in subfigure (a). (d): the result when we apply our subdivision algorithm from
Section 3.5 to visualize a CWF with zj = exp(3πixj) and the unrelated, incompatible
ωjk = (0, 3π) · (vk−vj). Although the rendered wrinkled mesh is smooth, it is riddled
with mesh-dependent singularities, and ω has little semantic relationship to the waves
in the resulting pattern. We insist on soft compatibility between ω and z̃ to avoid
such artifacts. (e): this time, we use ωjk = (3π, 0) · (vk − vj), a compatible frequency
that gives us a valid CWF . When rendered, this discrete CWF is indistinguishable
from the exact pattern.

integer variables, etc.) we instead follow in the footsteps of previous work Knöppel

et al. (2015); Evgeny and Harders (2019) and allow arbitrary ω. The singularities in

the wrinkle pattern are then implicitly determined by where ω fails to be integrable.

Frequency-Phase Consistency Since we do not require ω to be integrable, ω

cannot in general be exactly the derivative of phase. Recall, however, that the moti-

vation for including frequency in our discrete representation is so that it can supply

the information missing from zj (alone) about the jump in phase across a mesh edge.
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For this purpose, frequency is only useful if, far away from singularities, we do have

ω ≈ d arg(z). (See Figure 3.4d for an example where frequency and phase are totally

uncorrelated.) We therefore require the phase variables in a CWF to be “as com-

patible as possible” with the frequency, (a) given that frequency is not necessarily

integrable and (b) accounting for the necessary presence of singularities.

In the smooth setting, one formulation of the above soft compatibility condi-

tion is to require z to be compatible in a least-squares sense by minimizing an energy

similar to ∫
M

∥d arg(z)− ω∥2 dA. (3.1)

We cannot use this energy as-is, as it is formally undefined near singularities and

at branch cuts. To avoid the discontinuity in arg(z) at branch cuts, we rewrite the

constraint in terms of z̃ = z/|z| Knöppel et al. (2015),

z̃ = argmin
z̃

∫
M

∥(d− iω)z̃∥2 dA (3.2)

s.t. |z̃| = 1,

which has the added benefit of eliminating some of the nullspace from Equation (3.1)

(which is invariant under rescalings of z).

Singularity Handling Equation (3.2) remains ill-posed at singularities (where nei-

ther z̃ nor ω are well-defined) and ill-conditioned close to the singularities, where

∥ω∥ → ∞.

There are many potential strategies for relaxing Equation (3.2) to regularize

the behavior at singularities. Our approach is to relax the unit-norm constraint, so

as to allow z̃ to vanish at singularities, using a Ginzburg-Landau-type term Kohn

(2006); Viertel and Osting (2019):

z̃ ∈ Optω = argmin
z̃

∫
M

[
∥(d− iω)z̃∥2 +

(
|z̃|2 − 1

)2]
dA. (3.3)
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For later reference, we define:

Ecompat(z̃, ω) =

∫
M

∥(d− iω)z̃∥2 dA,

Eunit(z̃) =

∫
M

(
|z̃|2 − 1

)2
dA.

(3.4)

We next discretize this variational characterization of z̃ to define the final, discrete

soft compatibility conditions we impose to our CWF representation.

3.3.1 Complex Wrinkle Field Representation

Motivated by the above discussion, we define CWF to consist of the following

degrees of freedom:

1. a (not necessarily integrable) frequency one-form, encoded as a real number ωjk

on each directed edge of the mesh (with ωjk = −ωkj);

2. a real number aj and complex number z̃j on each vertex of the base triangle

mesh T, which together encode the approximate amplitude and direction of

zj = ajz̃j discretizing the smooth setting’s amplitude-phase field z;

3. with the zj constrained to be softly compatible with the frequency one-form,

d arg(z) ≈ ω, via discretization of Equation (3.3) on the base triangle mesh.

To discretize the first, least-squares, compatability term of Equation (3.3), we

apply the formulation proposed by Knöppel et al. (2015), as it is designed to be robust

in the case that ωjk is larger than 2π on an edge jk,

Êcompat(z̃, ω) =
∑

edges kℓ

Akℓ |z̃k exp(iωkℓ)− z̃ℓ|2 , (3.5)

and directly apply piecewise-constant discretization for the second, unit-length penalty

term,

Êunit(z̃) =
∑

vertices j

Aj

(
|z̃j|2 − 1

)2
, (3.6)
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where the Akℓ and Aj are edge and vertex barycentric area weights, respectively. We

then require

z̃ ∈ Ôptω = argmin
z̃

[
Êcompat(z̃, ω) + Êunit(z̃)

]
, (3.7)

where Ôptω defines our discretized consistency conditions.

Remarks Note that in Equations (3.4) and (3.7) we have made an implicit choice

to weight the compatibility and unit-norm terms equally. For regions away from the

singularities, Ecompat ≈ 0, so that Equation (3.4) gives us unit z̃ for any positive

scaling of Eunit. For regions near the singularities, Ecompat → ∞ unless z̃ → 0 so

that, for any scaling of Eunit, the least-squares energy Ecompat is the dominant term,

which ensures that z̃ ≈ 0. These observations show that Optω is largely invariant to

the relative scaling of the two constraint terms, and we make the simplest choice to

weight them equally. Note also that Optω is a nontrivial subspace and contains more

than a single element. At minimum, if z̃ ∈ Optω, then so is its global phase shift

exp(iθ)z̃ for every θ ∈ [0, 2π).

3.4 Interpolation

In this section we present an algorithm for temporal interpolation of CWF s:

given two CWF s as boundary conditions, (ω0, a0, z̃0) and (ω1, a1, z̃1), we seek a

smooth interpolant γ(t) = (ω[t], a[t], z̃[t]) through the space of CWF s which matches

the prescribed boundary conditions at t = 0, 1 and which approximates the behavior

of real-world wrinkled materials deforming over time.

The challenge with computing such an interpolation is that while there are

many smooth choices of interpolant γ(t), they are often qualitatively unacceptable.

For physically-based wrinkle evolution, wrinkles should slide over the surface rather

than disappear in one location and then reappear at a target location, and singularities

should slide smoothly over the surface. Otherwise plausible-seeming interpolants
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that are not specifically designed to promote physical fairness of the wrinkle motion

regularly produce obvious visual artifacts that are unacceptable for many applications

such as animation or editing. For many examples please see Section 3.4.3 and the

Interpolation Results video.

3.4.1 Our Approach

To compute physics-inspired, smooth paths between boundary conditions in

the space of CWF s, we begin with the closely-related problem of computing geodesics

in the space of thin shells (see e.g. the work of Heeren et al. (2012)). For our

application, the key idea from this work boils down to defining a metric on shell

space that measures the length of a path between configurations in terms of the

integrated norm of strain-rate along that path. A shortest geodesic in this space is

then, effectively, the path that requires doing the least work on the system when

deforming the shell along that path.

To compute comparable wrinkling geodesics for CWF s we measure a bending

strain3 given in terms of the combined geometry of the underlying wrinkle-free base

surface M and the wrinkle displacements Chen et al. (2021b),

ϵ = I−1
(
II − ĪI − a cos θωTω

)
(3.8)

= I−1
(
II − ĪI −ℜ(z)[d arg z]T [d arg z]

)
, (3.9)

where I and II are the first and second fundamental forms of the base surface and ĪI

is the second fundamental form of the shell’s assumed rest state. Following Heeren

et al. (2012), we can then define our distance on paths γ(t) by

d(γ) =

∫ 1

0

∫
M

∥ϵ̇[z(t)]∥2dA dt, (3.10)

3We make the simplest assumption that the stretching strains in the wrinkled surface represented
by a CWF are negligible. This decision is justified as compressive stresses should be mostly ab-
sorbed by wrinkling. That said, unless both CWF keyframes of an interpolation represent isometric
deformations of the same underlying surface, there must be some amount of stretching involved and
so it should be interesting to consider inclusion of stretching measures as well in future work.
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where, assuming a hyperelastic homogeneous and isotropic material, we apply the

StVK material norm for ∥ · ∥; please see Appendix B.1 for details.

Computing Geodesics Geodesics are then constrained minimizers γ of Equation

(3.10) satisfying z̃(t) ∈ Optω(t). However, computing these geodesics by directly

minimizing Equation (3.10) is difficult. In Appendix B.1.2 we derive, after a sequence

of approximations and additional simplifying assumptions, an approximate solution

to Equation (3.10) given by

a(t) = (1− t)a0 + ta1 (3.11)

z̃(t) = argmin Esmooth(z̃) + cEopt(z̃, ω) (3.12)

and an explicit formula for ω(t) given in Equation (B.34) (Appendix B.1.2), where

Esmooth(z̃) =
1

2

∫
M

gbd

∫ 1

0

∣∣ ˙̃z∣∣2 dtdA (3.13)

gbd =
(a0)

2 ∥ω0∥4 + (a1)
2 ∥ω1∥4

2
(3.14)

approximates Equation (3.10) after a and ω are substituted in and simplified—

effectively giving a weighted Dirichlet energy in spacetime promoting smoothness

of wrinkle phase; and

Eopt(z̃, ω) =

∫ 1

0

[Ecompat(z̃[t], ω[t]) + Eunit(z̃[t])] dt (3.15)

provides a penalty term, with stiffness c, for the constraint z̃ ∈ Optω that z̃ and ω

are approximately compatible. We use c = 103gave in all of our examples, where

gave =

∫ 1

0

∫
M

a2∥ω∥4 dA dt (3.16)

is the spacetime averaged amplitude squared times frequency quartic, in order to make

the cEopt unit consistent. If c is too low, the interpolant γ(t) fails to satisfy the CWF

compatibility constraint, yielding noisy wrinkle pattern evolution and many extra

singularities. If c is too high, the optimization problem (3.12) becomes numerically
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unstable and does not converge to a smooth solution. Please see Appendix B.7.2

for some experiments probing the effect of the choice of c on our results and the

suitability of our empirically selected value.

Discretization Given two CWF boundary conditions (ω0, a0, z̃0) and (ω1, a1, z̃1)

and a desired number of intermediate frames N , we discretize time into N steps of size

δt = 1/N and minimize a discretization of Equation (3.12) over the base triangle mesh

T with a globalized Newton solve. Please see Appendix B.1.3 for additional details,

including the full formulas for all our discrete analogues of the above energy terms

used in our final solve. Within our Newton implementation we use SuiteSparse’s

parallel implementation of supernodal sparse Cholesky decomposition Chen et al.

(2008) as our linear solver, and terminate when converged to an objective gradient

norm smaller than 10−6.

Linear Substepping The cost of computing N interpolating frames using our

algorithm is dominated by the cost of solving Equation (3.12), which scales roughly

linearly in N . When many frames are needed, for example when rendering videos,

this computation is wasteful, since consecutive frames will be almost identical. For

large N , we suggest using our algorithm to compute N ′ = N/k guide frames instead,

and then linearly interpolating the CWF variables for k steps between each guide

frame. As a rule of thumb, linear interpolation is an adequate approximation to a

geodesic path between guide frames if the distance traveled by wrinkles during that

time does not exceed the average mesh edge length. We use N = 200, with N ′ = 50

and k = 4 in all of our videos, and provide timing information for the examples in

this chapter in Table B.1. We further provide some experiments showing the effect

of the choice of N ′ on the interpolant quality in Appendix B.7.1.

Handling Incompatible Boundary Conditions The above algorithm assumes

that provided boundary conditions are valid CWF s. If applied to boundary conditions
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that severely violate CWF soft compatibility, our interpolant will move abruptly

near t = 0 and 1 (since Equation (3.15) will enforce the soft compatibility condition

everywhere except at the infeasible, prescribed endpoints). Since in applications these

boundary conditions will often be provided by the user (as keyframes for animation,

e.g.) we propose pre- and post-processing steps that allows use of our algorithm even

when the boundary conditions have incompatible frequency and phase.

In particular, notice that the discrete compatibility term in Equation (3.5)

implies the constraint per edge

z̃k exp(iωkℓ) = z̃ℓ. (3.17)

This allows us to decompose any frequency one-form ω into a consistent, constraint-

satisfying portion, ωcom, and a residual δω; that is, there is a unique one-form δω,

with −π ≤ (δω)jk < π on each edge jk, such that ωcom = ω − δω and z̃ exactly

satisfy Equation (3.17) on every edge. To handle non-CWF boundary conditions, we

decompose the frequencies ω0 and ω1 into their consistent and inconsistent parts, and

apply interpolation to the CWF s boundary conditions (ω0
com, a

0, z̃0) and (ω1
com, a

1, z̃1)

instead. We then interpolate δω using the same explicit interpolation applied for ω(t)

given in Equation (B.34) (Appendix B.1.2), and add this frequency component back

into the final interpolant: γ(t) = (ω(t) + δω(t), a(t), z̃(t)).

3.4.2 Results

We demonstrate that our interpolation algorithm yields high-quality wrinkle

evolution given a variety of keyframes pairs. Even more interpolation examples, with

keyframes created by local edits to wrinkle patterns, are discussed in Section 3.6.

Important note: it is difficult to assess the quality of the interpolant, and especially

temporal coherence, from a sparse set of stills. Please see the Comparisons supple-

mental video for animations of these examples.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure 3.5: CWF interpolation between two wrinkle patterns on the fertility model,
where the second keyframe (last column) has triple the frequency and one-third the
amplitude of the first keyframe (first column). We show, from top to bottom, the
amplitude, phase, and rendered wrinkles for several intermediate frames during in-
terpolation. On the amplitude plot, blue indicates |z| = 0 (singularities) and red
indicates larger amplitude. For the animation, please check the Interpolation Re-
sults video in the supplementary material at timestamp 01:46–02:01.

Change in Wrinkle Frequency Increasing the frequency of a wrinkle pattern on

a compact surface like the fertility model (Figures 3.5 and 3.6), though conceptually

simple, involves a complex path through the space of wrinkle fields since it is impos-

sible to have “fractional” numbers of wrinkles. New wrinkles must be born as the

frequency increases, with singularities appearing in pairs and sliding over the surface

to “unzip” a new wrinkle.

Change in Wrinkle Direction We also show several examples of interpolation

between wrinkle patterns that have been globally or locally rotated by ninety degrees

relative to each other in Figures 3.1 and 3.7. The amplitude and phase plots show

singularities appearing, splitting, and merging in a complex dance in both cases.

3.4.3 Comparison to Other Approaches

We compare our method against some baselines.
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3 × frequency

1/3 × amplitude

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure 3.6: CWF interpolation of two wrinkle patterns on the fertility model, where
the second keyframe’s wrinkles are triple the frequency of the first keyframe, and their
amplitude shrinks by one-third on a local patch of surface (the red region on the mesh
up top). We design an interface region (the green region; see Section 3.6) to ensure
a smooth transition between the red edited region and the unchanged white region.
In the supplementary Interpolation Results video at timestamp 02:02–02:20, we
show the corresponding wrinkle animation for a better temporal visualization.

Linear Interpolation It is natural to try to temporally interpolate between CWF

boundary conditions by linearly interpolating the constituent variables:

a(t) = (1− t)a0 + ta1; ω(t) = (1− t)ω0 + tω1; z̃(t) = (1− t)z̃0 + tz̃1.

Such an interpolant lacks physical meaning and moreover does not stay within the

space of CWF s, since there is no reason to expect ω(t) and z̃(t) to stay approxi-

mately compatible during the interpolation. See Figure 3.10 and Figures B.9, B.10

in Appendix B.6 for some examples of artifacts that arise when using this linear

scheme. Note that replacing linear interpolation of z̃ and ω with a more complicated

non-linear interpolant would not help resolve this incompatibility issue.

For comparison on a more didactic example, consider the simple case of a plane
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Rotate 90 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure 3.7: CWF interpolation of two wrinkle patterns on the Stanford bunny, where
the user has locally rotated the frequency field by ninety degree (red region of the
top mesh). Top row: the user-specified keyframes. Second row: the upsampled am-
plitudes |z| = a|z̃| of the CWF , ranging from blue at singularities (|z| = 0) to red
where the amplitude attains its maximum. Third row: the upsampled phase of the
CWF . Bottom row: the rendered wrinkle patterns. We see nontrivial wave mergers
via singularities sliding. Please check the Interpolation Results video in the sup-
plementary material at timestamp 01:29–01:45 for the corresponding animation.

wave rotating by ninety degrees, z0 = exp(ix) and z1 = exp(iy). On a sufficiently

small patch centered at the origin, we expect interpolation to rotate the plane wave,

with an interpolant resembling z(t) = exp(i[x cos πt
2
+ y sin πt

2
]). In Figure 3.8 we see

that when using our proposed interpolation algorithm, the interpolant is indeed rigid

rotation of the wrinkles. On the other hand, linear interpolation shears the wrinkles,

which midway through the interpolation degenerate along a singular line.
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Ours

Linear

t=0 t=0.25 t=0.5 t=0.75 t=1

Figure 3.8: Failure of linear interpolation given boundary conditions z0 = exp (ix)
and z1 = exp (iy). We show the phase patterns at several intermediate frames using
linear interpolation (top row) and our proposed interpolant (bottom row). Notice
that linear interpolation introduces severe artifacts in the wrinkle pattern: wrinkles
shear and degenerate along a sharp line midway through the interpolation.

Knöppel et al. (2015) In their paper, Knöppel et al. propose a method to ex-

tract vertex phase information from a provided frequency one-form by solving an

eigenvalue problem. They also propose a spatial interpolation scheme for extending

phase into triangles by placing singularities at their centers as needed. While well-

suited for generating individual, static geometries, Knöppel et al.’s method is not

designed to give temporally coherent motion when run on a sequence of frames with

smoothly-changing frequency. Indeed, if we apply their method to ω(t) (computed

using Equation (B.34) in Appendix B.1.2) to generate a phase interpolant z(t), we

get beautiful individual frames, as expected (Figure 3.10) but see that the frames are

discontinuous in time (see the main supplemental video at timestamp 03:44–04:04).

Moreover, Knöppel et al. focus exclusively on phase fields and do not discuss

wrinkles with amplitude. We make a good-faith attempt to incorporate amplitude in

the method (See Figure 3.9) by linearly interpolating the keyframe vertex amplitudes

in time and then barycentrically blending them into each triangle. The resulting arti-

facts are due to a mismatch between where Knöppel et al. places phase singularities
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(at centers of triangles) and where amplitude vanishes (which can only be at vertices).

Linearly blended amplitude Knöppel’s phase Wrinkled mesh CWF wrinkled mesh

Figure 3.9: Knöppel et al. (2015)’s algorithm is designed only for stripe patterns
(phase fields), not wrinkles with amplitude. Naively combining the phase field
produced by Knöppel et al’s method with linearly-interpolated amplitude (through
barycentric blending from triangle corners) yields artifacts near wrinkle singularities
(the red zoomed-in region). In this case, the coarse mesh has a constant amplitude on
each vertex. Moreover, without our CWF subdivision algorithm, meshing artifacts
are apparent in the rendered result (the black zoomed-in region).

Chen et al. (2021b) a.k.a. Chapter 2 In our TFW model, we also describe a

method for rendering high-resolution wrinkled surfaces given frequency and ampli-

tude fields on the surface (Appendix A.6.5). To compare against this work, we again

use Equations ((3.12)), Equation (B.34) (Appendix B.1.2) to compute a(t) and ω(t)

and apply TFW to each frame of the interpolation. See Figure 3.10 and the Com-

parisons supplemental video for the results. Unlike Knöppel et al. (2015), TFW

model does consider wrinkle amplitude, and so can produce smooth wrinkled surface

geometry. However, their approach again suffers from temporal incoherence. More-

over, we observe their method also can fail to capture the sliding of singularities over

the surface, instead producing degenerate, noisy phase fields; see e.g., Figure 3.10

around t = 0.5.

Keyframes from Physical Simulation Finally, we compare the behavior of our

interpolant to the results of physically simulated wrinkle evolution. We start by sim-
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ulating the twisting of a 1-meter-high (diameter 0.25 meters, thickness 0.318 mm,

Young’s Modulus 0.821 MPa, density 472.6 kg/m3, and Poisson’s ratio 0.243), 88k-

vertex cylinder mesh, by 80 degrees with C-IPC’s Li et al. (2021) open-source im-

plementation of shell finite elements. The cylinder’s top and bottom boundaries are

pinned to rotate (time-stepped at 0.04 seconds/frame) in opposite directions at 10 de-

grees/s without gravity or external forces. To avoid simulating the transient dynamics

before wrinkles appear, we initialize the cylinder slightly twisted (by 8 degrees in both

direction) and run the simulation for 80 frames (so that cylinder ends are twisted by

40 degrees in both directions at the last frame). During this motion, wrinkles rotate

and merge; see Figure 3.11, top, and the Comparisons supplemental video.

To compare these simulated results with corresponding intermediate frames

computed using CWF interpolation, we take the first and last frame of the sim-

ulation as interpolation inputs. Specifically, we decimate the cylinder mesh to 688

vertices and then apply a tension-field-theory-based static solver Skouras et al. (2014),

implemented by Chen et al. (2021b), to compute a wrinkle-free base mesh for every

frame. We then manually set the frequency at the two endpoint keyframes by count-

ing the number of wrinkles in the corresponding frames of the C-IPC simulation, and

scale the wrinkle amplitude to preserve surface area of the cylinder. In Figure 3.11,

bottom, we see that the CWF interpolated frames then well-align with the input

keyframes and, in-between, obtain qualitatively similar merging and deformation to

the simulation results. That said, these interpolated frames do have expected and

notable differences from the simulated results: deformation paths differ (e.g., with

wrinkles merging at different times) and, of course, the CWF model (as it considers

only a single primary frequency) does not capture the secondary wrinkles observable

in the simulation results.
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Ours

Linear

Chen et al.

Knöppel et al.

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure 3.10: We compare our interpolation algorithm to several baselines on an exam-
ple of wrinkles rotating by ninety degrees on the Stanford bunny. Linear interpolation
leaves the space of CWF s and consequently produces severe artifacts. Both Knöppel
et al. (2015) and Chen et al. (2021b) produce temporally incoherent results, though
these discontinuities are hard to see in static frames and much more obvious in the
main supplementary video (at 03:44–04:04) and the Comparisons supplementary
video (at 01:00–01:56). Additionally, Chen et al.’s phase field becomes noisy midway
through the interpolation.
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Frame 0

C-IPC

Ours

Frame 10 Frame 20 Frame 30 Frame 40 Frame 50 Frame 60 Frame 70 Frame 80

Figure 3.11: We compare CWF interpolation to the results of physically simulated
wrinkle evolution. We simulate the twisting of a cylinder by 64 degrees (from 16 to 80
degrees) with C-IPC Li et al. (2021) (top) and compare its results with CWF interpo-
lation using the the first and last simulated frame (bottom) as boundary conditions.
CWF smoothly interpolates the given keyframes with qualitatively-similar wrinkle
merging and deformation (though it does not capture secondary wrinkles that emerge
during simulation). See the Comparisons supplemental video (at 02:57–03:13) for
an animated comparison.

3.5 Wrinkle Upsampling

Representing fine wrinkle patterns on coarse meshes is only useful if there is

a way to actually see them. Given a triangle mesh T and a CWF on that mesh,

rendering the wrinkled surface requires both upsampling T itself (yielding a smooth

canvas on which to place wrinkles, free of meshing artifacts) and turning the CWF

into a displacement map that can be applied to the upsampled mesh.

To that end, we propose the following upsampling strategy:

• For upsampling T, we focus exclusively on Loop subdivision Loop (1987), as it

is the most commonly-used triangle mesh subdivision scheme.

• In the remainder of this section, we will describe a rule for mapping per-vertex

complex numbers z and per-edge frequencies ω from Tk, the input mesh after

k levels of Loop refinement, to Tk+1. The quantities on T0 can be read directly
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from the CWF (zi = aiz̃i on the vertices), and then upsampled to any desired

level of refinement.

• To materialize the wrinkled mesh at subdivision level k, we apply the displace-

ment |zi|n̂i cos(arg zi) to vertex vi, where n̂i is the vertex normal.

We use this approach to render all smooth wrinkled surfaces in this chapter

(we apply 4 or 5 levels of subdivision, depending on the frequency of wrinkles in

each example). We have not analyzed this process to prove that the limit surfaces

belong to some smoothness class, though in practice all of our results are visually

smooth, including near singularities. Although the above procedure is designed to

render CWF s, it can also be used to visualize z, ω pairs that do not obey approxi-

mate compatibility. We have observed that the resulting upsampled wrinkles are also

smooth, although they include extraneous singularities not reflected in z or ω (see

Figure 3.4d).

Preliminaries We now describe the upsampling maps zk → zk+1 and ωk → ωk+1.

To avoid cumbersome superscripts we will write T for Tk and T′ for Tk+1, and similarly

use primes to denote quantities on Tk+1. We write v for the vertices of T and S0 for

the Loop subdivision mask, so that v′
j = [S0v]j.

3.5.1 Upsampling ω

Research in geometry processing Wang et al. (2006); de Goes et al. (2016a)

has established a subdivision mask S1 on one-forms that is compatible with the Loop

subdivision mask and the discrete differential operator, in the sense that for any

function f on T, S1df = dS0f . On closed meshes, we use this operator directly, and

set ω′ = S1ω. On meshes with boundary, we modified the standard Loop formula and

de Goes et al.’s formula slightly to keep boundary corners sharp (see Appendix B.2

for details).
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3.5.2 Upsampling z

There are two obvious ideas for how to upsample the z values: either by

subdividing z’s real and imaginary parts separately, or its magnitude and phase.

Neither approach works, for essentially the same reasons discussed in Section 3.3 as

motivating the use of frequencies in addition to phase in the CWF representation:

in regions where the frequency is high, phase values at vertices undersample the

wrinkles. Computing z′ by averaging these aliased samples yields an equally-aliased

z′. We show a comparison between our approach (described below) and these two

naive baselines in Figure 3.12.

Subdivision of |z|, arg z Subdivision of ℜ(z), ℑ(z) Our upsampling

Figure 3.12: A comparison of our z → z′ upsampling algorithm (right) to naively
applying the Loop subdivision mask to z’s amplitude and phase (left), and to z’s
real and imaginary parts (middle). Neither baseline preserves the frequency of the
wrinkles in the original CWF .

3.5.2.1 Our Approach

To upsample z without aliasing the wrinkles, we need to incorporate frequency

information from ω into the upsampling procedure. We build up to the final formulas

for computing z′ on the vertices of T′ by first examining some simpler special cases.

We will use the following assumption as our guiding principle for deriving our sub-

division rules: in a local patch of the surface, the phase of z might change quickly,

but the frequency does not. This assumption allows to extrapolate and interpolate
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frequency values away from the edges on which they are defined.

Upsampling on a Line Segment Let us first consider the case of a line segment

with vertices v0 and v1, whose z-values are z0 and z1, and whose edge frequency is

ω. Suppose we need to estimate z at a point P = (1− α)v0 + αv1. Since we assume

frequency changes slowly, we can extrapolate z at P from z0 by z(P ) ≈ z0 exp(iαω);

similarly from z1 by z1 exp(i(1−α)ω). These formula do not necessarily agree unless

|z0| = |z1| and ω and z are exactly compatible. We reconcile the two votes by

barycentrically blending them:

z(P ) = (1− α)z0 exp(iαω) + αz1 exp(i(1− α)ω). (3.18)

Notice that z(P ) interpolates z0 and z1.

Upsampling in a Triangle We use a similar strategy for evaluating z at any point

P =
∑3

j=0 αjvj within a triangle {v0,v1,v2}, whose corresponding z values are z0,

z1 and z2, and whose edges have frequencies ω01, ω12, and ω20. Similar to the line

segment case, we can estimate z(P ) by extrapolating from a triangle corner vj by

z(P ) ≈ zj exp (iωj→P ), where

ωj→P := αj+1ωj(j+1) + αj+2ωj(j+2)

is the frequency on the segment vjP , as measured at vertex vj using ωj(j+1) and

ωj(j+2) as a basis for evaluating ω in any direction. Barycentrically blending this

formula from three corners gives us:

z(P ) =
3∑

j=1

αjzj exp
[
i
(
αj+1ωj(j+1) + αj+2ωj(j+2)

)]
. (3.19)

This triangle interpolant is similar to the one proposed by Evgeny and Harders

(2019) with one key difference: they formulate Equation (3.19) purely for phase

and propose barycentrically interpolating amplitude separately. The Zuenko and
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Harders approach is unsuitable for triangles containing singularities, since upsampled

amplitude does not neccessarily vanish at the singularites, creating visual artifacts

(Figure 3.16).

3.5.2.2 Loop Subdivision Rules for z

We now generalize Equation (3.19) to compute z′
i on the Loop-upsampled

vertex v′
i of T′. We must consider two cases: v′

i might be a repositioned vertex

already present in T (an even vertex), or an entirely new vertex that came from

splitting an edge of T (an odd vertex). We separately describe how to compute z′ in

each case; see Figure 3.13 for a visual summary of all the rules.

Odd Rule For an odd vertex, the standard Loop mask is

v
′

j =
1

8
(v0 + v1) +

3

8
(v2 + v3)

on a “diamond” with common edge v2v3. This mask can be rewitten

v
′

j =
1

2
P0 +

1

2
P1

P0 =
1

4
v0 +

3

8
v2 +

3

8
v3

P1 =
1

4
v1 +

3

8
v2 +

3

8
v3.

(3.20)

Notice that these formula combine barycentric sampling within a triangle (to compute

P0 and P1) followed by sampling the midpoint of a line segment (to compute v′
j.)

We can convert this interpolation into two single triangle interpolations at P0, w.r.t.

triangle {v0,v2,v3} and P1, w.r.t. triangle {v1,v2,v3}, together with line segment

interpolation at v′
j, w.r.t. {P0, P1}. We can transform these rules for computing v′

j

into rules for computing z′
j by applying the formulas from the special cases discussed

above: we use Equation (3.19) to compute z at P0 and P1. Next, we would like to use

Equation (3.18) to compute z′
j. There are two obstacles: first, we need the frequency

evaluated on the line segment P0P1. Second, this line segment generally does not lie
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on T, but rather cuts through ambient space, whereas frequencies are intrinsic to T’s

cotangent space.

We therefore modify the approach of Equation (3.18) to account for these

differences. First, we sample ω at P0 by interpolating the values of ω at the edges

of triangle v0v2v3 into the interior (see Appendix B.3 for more details; in particular

note that ω(P0) is a cotangent vector and not a scalar). We use this frequency to

extrapolate z(P0) to v′
j along the intrinsic edge from P0 to P1:

zP0→v′
j
= z(P0) exp (iω(P0)(P

∗
1 − P0)/2) , (3.21)

where P ∗
1 is the location of P1 after rigidly unfolding triangle v1v2v3 along the com-

mon edge v2v3 to lie in triangle v0v2v3’s tangent plane. We compute zP1→v′
j
analo-

gously.

Then the final z′
j is the average of the corresponding contributions from P0

and P1:

z′
j =

1

2
(zP0→v′

j
+ zP1→v′

j
). (3.22)

Even Rule Next, we consider an even vertex v′
0 corresponding to v0 on T, with

neighbors v1, . . . ,vn. v
′
0 has position

v′
0 = (1− αn)v0 +

n∑
j=1

αvj, (3.23)

where α is the traditional even-neighbor Loop weight and depends on the valence n

of v0 Loop (1987). As in the odd case, we can refactor Equation (3.23) as a convex

combination of points linearly interpolated within a single triangle:

v′
0 =

n−1∑
j=0

1

n
Pj, Pj = (1− 2γ)v0 + γvj+1 + γvj+2, (3.24)

for γ = nα
2
. We now follow the same recipe as in the odd case: we compute z(Pj)

using Equation (3.19), and write z′
0 as the average of contributions extrapolated from

each Pj.
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Mesh Boundaries For even vertices v0 on the mesh boundary with neighbors v1

and v2, we can once again write the Loop subdivision mask in terms of an average of

linear interpolations along mesh edges, and apply the same recipe as in the even and

odd interior cases above. In this case v′
0 = (P0 + P1)/2, where P0 =

1
4
v1 +

3
4
v0 and

P1 =
1
4
v2 +

3
4
v0. The odd boundary case involves sampling z on a mesh edge and so

Equation (3.18) can be applied directly.

(a) Even rules (b) Odd rules

Old vertices Updated vertices New vertices Auxiliary points
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2
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1
2
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1
2
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1
4
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1
4
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3
8
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8
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2
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( 1
n
)P0
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1
n
)

P2(
1
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n
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v1(γ)
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v3(γ)
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Figure 3.13: z subdivision rules for even and odd vertices. We show the rules for
both interior and boundary vertices. First, sample ω and z (using Equation (3.19))
at the red points Pi, using the barycentric weights specified in parentheses next to the
vertices. Finally, extrapolate z(Pi) to the upsampled vertex (blue or yellow) using an
analogous approach to Equation (3.21), and average these extrapolations using the
weights in parentheses next to the Pi.

Remark Notice that the upsampling strategy explained above has the following

useful property: it exactly reproduces plane waves, in the sense that if T is a piece

of the plane, ω is the differential of a linear function θ(P ) = v · P , and z(= z̃) is

consistent with ω, then under refinement the CWF (ω, 1, z̃) converges to (a phase

shift of) the smooth plane wave ψ(P ) = cos(v · P ).
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Level 0 Level 1 Level 2 Level 3 Level 4

Figure 3.14: We successively Loop-upsample the Stanford bunny, alongside the z and
ω of a CWF on the bunny, and render the resulting displaced surface. After several
rounds of subdivision, the wrinkle pattern appears and is stable under additional
iterations of subdivision.

3.5.3 Results and Comparisons

We show successive upsampling of a CWF on the Stanford bunny in Figure

3.14. Wrinkles appear as soon as the subdivided mesh has high enough resolution to

resolve their frequency. See all other figures of rendered wrinkles in this chapter for

more examples of our subdivision algorithm at work.

Triangle Interpolation Alternatives Several alternative formulas have been pro-

posed for interpolating phase into a triangle from samples at its corners; in Figure 3.15

we compare our choice of Equation (3.19) to several potential alternatives: the side-

vertex scheme used in Jeschke and Wojtan (2015)’s work, and the nine-parameter

Clough-Tocher cubic scheme Farin (1986). Notice that away from the singularities,

all of these three approaches achieve reasonable results; however the side-vertex and

Clough-Tocher cubic scheme fail to resolve neighborhoods of singularities. The rea-

son for this failure is that both schemes express phase at interior points in terms of

a rational or polynomial function of phase at the triangle vertices. It is mathemati-

cally impossible for such functions to produce singularities (where phase must have a

branch point where it’s undefined).
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No singularity No singularity Captures singularity

Clough Tocher scheme Jeschke and Wojtan (2015) Equation (3.19)

Figure 3.15: A comparison where we replace Equation (18) in our upsampling algo-
rithm with some alternatives, for a CWF on the Stanford bunny. From left to right:
the nine-parameter Clough Tocher cubic scheme Farin (1986), the side-vertex scheme
used by Jeschke and Wojtan (2015), and Equation (3.19). Only Equation (3.19) suc-
cessfully resolves the phase behavior near singularities (zoomed-in regions).

Other Upsampling Methods In Figure 3.16, we compare our upsampling algo-

rithm against two baselines from the literature Evgeny and Harders (2019); Chen

et al. (2021b). Zuenko and Harders render fine wrinkles on coarse meshes by first

linearly subdividing the mesh, interpolating phase onto the fine mesh using a variant

of Equation (3.19) and amplitude using barycentric interpolation, and then smooth-

ing the result with SPHERIGON Volino and Thalmann (1998) as a post-process to

remove some of the artifacts from the wrinkled mesh geometry. Since they separately

upsample wrinkle amplitude and phase, there is no guarantee that amplitude van-

ishes at phase singularities, leading to noticable noise (in the red and black zoomed-in

regions, for instance). Moreover the use of linear subdivision on T means that the

edges of the coarse mesh remain noticeable in the final rendered image, despite the

post-processing.

Like in our approach, Chen et al. (2021b) use Loop subdivision to upsample T,

as well as the wrinkle amplitude and phase, but their method requires that the input

frequency and phase are exactly compatible. This restriction makes their approach

unsuitable for rendering CWF s. In Figure 3.16 we make a best-effort comparison
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by projecting ω to the closest globally-integrable frequency using mixed-integer pro-

gramming, but doing so severely distorts the wrinkle pattern, and many singularities

are missing from the final rendered image.

Evgeny and Harders (2019) Chen et al. (2021b) CWF

Figure 3.16: We compare our upsampling algorithm against two baselines from pre-
vious work Evgeny and Harders (2019); Chen et al. (2021b). Zuenko and Harders
perform linear subdivision of T and separately upsample amplitude and phase in a
way that produces noticeable meshing artifacts and discontinuities near the singulari-
ties (see zoomed-in regions). Chen et al. (2021b)’s upsampling scheme only works for
curl-free frequency fields. To use their method, we project ω onto the space of glob-
ally integrable one-forms, but doing so distorts the wrinkle pattern, which is missing
many singularities.

3.6 Wrinkle Design

In this section, we demonstrate applications of our CWF algorithms for user-

based design and editing of wrinkled surfaces via interpolation. We first develop

tools for the creation and editing of CWF keyframes and then show their application.

Please also see our main and Interpolation Results videos for more details and

results.

3.6.1 Adding Wrinkles to Surfaces

For adding wrinkles to a surface a user first provides a mesh T = {v, e, f}

and selects k vertices as source points s (green points in Figure 3.17a) and at each

of those points a desired wrinkle frequency vector vs (the yellow arrow). A user then
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Designed sources Extended (a, ω) Wrinkled surface Amplitude Phase

Figure 3.17: Adding wrinkles to the Spot cow. From left to right: The user specifies
desired wrinkle directions (yellow vectors) and regions of influence for each chosen
direction (red regions). The user also assigns an amplitude to each region. We extend
a and ω from the user input to the entire mesh. Finally, we solve for z̃ and apply our
upsampling algorithm to materialize high-resolution wrinkled geometry. We show the
amplitude and phase of the final wrinkle pattern, after upsampling, on the right.

also specifies a region of influence ins ⊂ v for each source point (the white and red

regions in Figure 3.17a)4 and a target amplitude as for the wrinkles within the region

of influence.

Let S be the set of all source points {si}ki=1. We call the set of all vertices in

any region of influence the influenced vertices inV =
⋃
insi . The influenced faces inF

are those with at least one influenced vertex, and likewise for the influenced edges

inE.

From this input we solve for a wrinkle pattern on T. The process can be divided

into two parts: (1) input extension, where we extend the user-provided amplitude and

frequency samples to an a and ω on the entire mesh, and (2) wrinkle synthesis, where

we compute z̃ from a and ω and use the upsampling technique introduced in Section

3.5 to export the final wrinkled geometry.

We first apply the vector heat method Sharp et al. (2019) to extend the user-

provided frequencies vsi to a vertex-based vector field vi on v. Then for any influenced

4For simplicity we compute the region of influence as the n-ring neighborhood of the chosen
points, for a user-specified n; one could also compute a geodesic disk.
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edge eij ∈ inE we set

ωij =
1

2
(vi · eij + vj · eij),

and for any edge that is not influenced, we set ωij = 0.

We compute per-vertex amplitudes by solving

argmin
a

E(a) s.t.

{
ai = 0, vi /∈ inV

asi = csi , ∀si ∈ S
(3.25)

where

E(a) =
1

2
aTLa+

k∑
i=1

∑
vj∈insi

(aj − asi)2Aj

+
∑

Fℓmn∈inF

a2ℓ + a2m + a2n
3

(ωℓm + ωmn + ωnℓ)
2

and L is the positive semi-definite cotangent Laplacian matrix, Aj is the vertex

barycentric area, and ωℓm + ωmn + ωnℓ is the discrete curl. The first term promotes

smoothness of a; the second term measures agreement with the user-specified ampli-

tudes in the affected regions, and the final term couples the a to the ω to ensure that

amplitude goes to 0 at the singularities of ω. Finally, for the wrinkle synthesis step,

we solve the eigenvalue problem proposed by Knöppel et al. (2015) to determine z̃

and then directly apply the subdivision algorithm from Section 3.5 to (ω, a, z̃).

Remarks The procedure above is used to create local wrinkle patterns. If global

patterns are desired instead (such as the wrinkle patterns on the bunny in Figure 3.7),

we first compute ω using Knöppel et al. (2013)’s algorithm, and globally scale the

frequency and set a global constant amplitude to achieve the desired wrinkle char-

acteristics. Then we find the consistent z̃ values on the vertices and upsample the

result using the wrinkle field synthesis algorithm described above.

3.6.2 Editing Wrinkles

Next, we describe a tool for editing wrinkles, given an existing mesh T and

CWF (z̃0, a0, ω0). There are four steps in the editing pipeline:
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• The user picks a region of the mesh to edit (red in Figure 3.7).

• The user edits the wrinkles in that region. Options we implemented are: rotat-

ing the frequency, changing the frequency magnitude, and changing the wrinkle

amplitude.

• We blend the new wrinkle pattern in the edited region with the existing one

inside an interface region around the chosen region (green region in Figure 3.7).

Wrinkles away from the edited region and its interface do not change.

• We interpolate between the original CWF and the edited one, using our inter-

polation algorithm.

The third step requires some elaboration. Let fedit ⊆ f be the set of faces where

the user has chosen to make edits, and let ω1 and a1 be the requested frequency

and amplitude in that region. We need to construct a new z̃1, which satisfies (1)

z̃1 = z̃0 far away from fedit; and (2) z̃1 is consistent with ω1 within fedit. To avoid a

discontinuity in frequency and amplitude on the edited surface, we create an interface

region finter of user-specified size around fedit. The remaining mesh faces will not

change; we call them ffixed.

Let eedit be the edges of the triangles in fedit, and efixed and vfixed the edges

and vertices of ffixed, respectively. The above requirements can be written as follows:

• z̃1
j = z̃0

j , for any vj ∈ vfixed.

• |z̃1
j | = 1, for any vj ∈ v \ vfixed.

• z̃1
k exp(iωkj)− z̃1

j = 0 for any edge ejk ∈ eedit.

• The interface frequency and amplitude fields are smooth.
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We first interpolate ω1 into the interface region. To get a frequency field that

is as smooth as possible, we minimize the Dirichlet energy of that field with Dirichlet

boundary conditions:

argmin
ω

∑
fℓmn

(ωℓm + ωmn + ωnℓ)
2 +

∑
vm

(∑
emn

cmnωmn

)2

s.t

{
ωjk = ω0

jk, ejk ∈ efixed

ωjk = ω1
jk, ejk ∈ eedit,

(3.26)

where cmn is the cotangent weight w.r.t. edge emn, and the first and second term are

the discrete curl and divergence respectively.

Once we have the frequency field, the amplitude field is the optimal solution

of the following modified Dirichlet energy:

argmin
a

1

2
aTLa+

∑
Fℓmn

a2ℓ + a2m + a2n
3

(ωℓm + ωmn + ωnℓ)
2

s.t

{
aj = a0j , vj ∈ vfixed

aj = a1j , vj ∈ vedit,

(3.27)

which asks for an amplitude that is as smooth as possible while ensuring (via the first

term) that the amplitude vanishes at singularities. Here L is the positive semi-definite

cotangent Laplacian.

Finally, we compute an approximately-consistent z̃ inside the interface and

edited regions by solving an optimization problem generalizing the strategy from

Knöppel et al. (2015):

min
ũ,s

Ecompat(P ũ+ su0, ω) s.t.
∥∥P ũ+ su0

∥∥2
M0

= 1 (3.28)

where ũ is a vector of size |v| − |vfixed| representing the unknown values of z̃ in the

non-fixed region, u0
j = z̃0

j for any vj ∈ vfixed (with other entries zero), M0 is the mesh

barycentric mass matrix, and P is the inclusion matrix that extends ũ to the whole

domain by inserting zeros for vertices in the fixed region. The single scalar value s

allows for rescaling (but no other changes) within the fixed region. The inclusion of s
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in the optimization is required since the more straightforward restriction of Knöppel

et al. (2015)’s method to the non-fixed region,

min
ũ
Ecompat(P ũ+ u0, ω) s.t.

∥∥P ũ+ u0
∥∥2
M0

= 1, (3.29)

enforces an average scaling of ũ within the non-fixed region separate from, and gen-

erally inconsistent with, the scaling of u0 in the fixed region.To transform Equa-

tion (3.28) so that it is once again an eigenvalue problem, we make the substitutions

v = [ũ, s] and M ′
0 = P TM0P . From ũ we compute u = P ũ/s + u0 and then set

z̃1
j = uj/|uj|. Notice that (ω1, a1, z̃1) is not necessarily a valid CWF since z̃1 may

not satisfy the soft compatibility condition exactly (and it is not generally possible

to satisfy them without changing the z̃j within the fixed region). We can render the

wrinkle field nonetheless, and use it as a keyframe for wrinkle evolution by projecting

it to a CWF using the pre-processing described in Section 3.4.

3.6.3 Results

We perform a variety of local edits to wrinkles on surfaces and visualize the

wrinkle evolution during the editing process. Figures 3.6 and 3.18 illustrate local

frequency increase, with a corresponding decrease in amplitude in the former example.

In Figure 3.7 a user demands a local rotation of the wrinkles by 90 degrees, while

maintaining the frequency magnitude and amplitude. We also support different types

of edits on different patches. In Figure 3.19, we enlarge the frequency of the patch on

Spot’s body by 2.5 times, while at the same time rotating the direction of wrinkles

on the head by 90 degrees. These examples show that we can interpolate between

extreme frequency or direction differences, and the singularities nevertheless slide

smoothly over the surface without temporal discontinuities or other artifacts seen in

results from previous work.

Please see the Interpolation Results supplemental video, and Appendix B.5,

for more examples of editing wrinkles, including some examples of modifying the

output of wrinkles computed via physical simulation.
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5× frequency

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure 3.18: CWF interpolation of two wrinkle patterns on the Phantasma model,
where the user has locally increased wrinkle frequency by 5×. Our algorithm suc-
cessfully generates a smooth path between these challenging keyframes. For the
corresponding wrinkle animation, please watch the Interpolation Results video at
timestamp 00:54–01:11 in the supplementary materials.

3.7 Limitations and Future Work

In this chapter we made several design decisions that could be fruitfully revis-

ited in future work in order to generalize CWF s and our interpolation or upsampling

algorithms, such as restricting wrinkles to waves with a single (but spatially-varying)

frequency, rather than a superposition of frequencies Rémillard and Kry (2013a); and

limiting refinement to Loop subdivision. The comparison to wrinkled materials (e.g.,

the simulated cloth in Figure 3.11) indicates significant potential value in extending

this work to model additional, secondary, higher-frequency wrinkle fields superim-

posed upon the first. Another particularly interesting direction of future work is to
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study the use of CWF s for solving PDEs involving waves other than the interpolation

boundary value problem: for example, we believe that it’s likely that cloth dynamics

would benefit from CWF kinematics as it would allow simulation of wrinkles that

have much higher frequency than the base mesh. Finally, complex wrinkle fields

could be used to model skin wrinkles or fingerprints; though as argued by Evgeny

and Harders (2019), high-quality skin wrinkles would likely require extending CWF s

to waves with non-sinusoidal profile.

Rotate 90 degrees

2.5 × frequency

0.4 × amplitude
t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure 3.19: CWF interpolation of two wrinkle patterns on Spot. Please refer to the
Interpolation Results video in the supplementary materials for the corresponding
wrinkle animation (timestamp 02:21-02:37).

Interpolation Performance Interpolating CWF s is currently far from real-time

(please refer the time table in the supplemental document for more details); our

implementation took 4 minutes to compute keyframe interpolation on average, with

32 seconds minimum and 12 minutes maximum among all the examples. One problem
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is that our optimization problem is not a convex optimization: although the other

two terms (Esmooth and Ecompat) in Equation (3.12) are quadratic, Eunit is nonlinear

and not convex, and this nonlinearity is enough to cause Newton’s method difficulty.

Performance could be improved by refactoring the optimization problem (including

perhaps by improving the initial guess) or parallelizing the linear solver on the GPU.

Note that the size of the linear system (in terms of number of non-zeroes) grows

linearily in the number of requested frames N . To improve the efficiency, we proposed

the use of guide frames (Section 3.4.1). We study the performance vs. quality tradeoff

of the choice of number of guide frames in Appendix B.7.1; careful tuning of this

parameter could achieve a bettter tradeoff than our (conservative) use of N ′ = 50.

Preventing Collisions When amplitudes are large, it is possible for neighboring

wrinkle periods to collide, or for wrinkles to “poke through” distant portions of the

base mesh. Our work currently does not detect or prevent such collisions in any way.

Alternative Incompatibility Norm When defining Optω, we choose to use the

L2 norm to measure the incompatibllity between ω and z̃ (Equation (3.2)). Given

that singularies are usually sparsely distributed on a wrinkled surface, a promising

alternative is the L1 norm, which promotes such sparsity, but is more difficult to

optimize.

More General Wrinkle Parameterization Several of our editing examples take

as input wrinkle geometry computed by spectral wrinkle simulators Chen et al.

(2021b); Evgeny and Harders (2019). In these cases we could directly convert the

output of the simulators into CWF variables. For more general wrinkled surfaces

(computed by a finite element simulator Narain et al. (2012a), for instance), a miss-

ing step is how to decompose a high-resolution, wrinkled mesh into the coarse but

smooth base mesh T and the CWF variables. It’s unclear how to best perform this
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decomposition, especially when wrinkles are complex, aliased, and contain many sin-

gularities. In addition to optimization-based approaches, another promising avenue

is training a neural network to perform the decomposition.

Improved Wrinkle Physics Our interpolation is physics-inspired, but due to sim-

plifying assumptions in the derivation such as neglecting the inertia of wrinkles and

the effect of base mesh stretching on the wrinkle evolution, our interpolant is not

guaranteed to exhibit fully realistic wrinkle dynamics. One possible improvement is

to rederive the interpolation formula using the full reduced-order elastic energy de-

rived by Chen et al. (2021b) instead of assuming inextensible shells. Additionally,

the current model interpolates the CWF variables completely independently of any

movement or deformation of the base mesh. A scheme that jointly optimizes for

a coupled base mesh and CWF interpolant could result in wrinkle evolution with

higher physical realism. Along similar lines, our current model does not consider

inhomogeneities or special features of the base mesh, such as hems or seams, which

significantly affect fabric wrinkling in the real world. A possible direction for further

exploration is to extend our work by imposing spatial boundary conditions on the

CWF variables at the locations of stiff seams.
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Chapter 4: Robust Low-Poly Meshing for General

3D Models1

Figure 4.1: A gallery of wild high-poly input meshes and their corresponding low-
poly outputs generated by our method, where the low-polys are manifold, watertight,
and self-intersection free, and have a small visual difference from their high-poly
counterparts.

We propose a robust re-meshing approach that can automatically generate

visual-preserving low-poly meshes for any high-poly models found in the wild. Our

method can be seamlessly integrated into current mesh-based 3D asset production

pipelines. Given an input high-poly, our method proceeds in two stages: 1) Ro-

bustly extracting an offset surface mesh that is feature-preserving, and guaranteed to

be watertight, manifold, and self-intersection free; 2) Progressively simplifying and

flowing the offset mesh to bring it close to the input. The simplicity and the visual-

preservation of the generated low-poly is controlled by a user-required target screen

size of the input: decreasing the screen size reduces the element count of the low-poly

1This chapter is modified from Chen et al. (2023b). Please refer this webpage for details.
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but enlarges its visual difference from the input. We have evaluated our method on

a subset of the Thingi10K dataset that contains models created by practitioners in

different domains, with varying topological and geometric complexities. Compared

to state-of-the-art approaches and widely used software, our method demonstrates its

superiority in terms of the element count, visual preservation, geometry, and topology

guarantees of the generated low-polys.

4.1 Introduction

Mesh is a ubiquitously employed representation of 3D models for digital games.

While a mesh with a large number of polygons (high-poly) is required to express vi-

sually appealing details, rendering its low-poly approximation at distant views is a

typical solution to achieve real-time gaming experience, especially on low-end de-

vices. High-polys, no matter whether they are manually created through modeling

software or automatically converted from CSG and implicit functions, often have

complex topology and geometries, such as numerous components, high genus, non-

manifoldness, self-intersections, degenerate elements, gaps, inconsistent orientations,

etc. These complexities can pose significant challenges to the design of automatic

low-poly mesh generation algorithms.

Over past decades, two typical ways are developed to obtain low-poly textured

models: automatic mesh reduction that preserves original textures Hoppe (1999); Liu

et al. (2017); manual mesh modeling followed by UV-generation and texture baking

that creates new textures. Mesh reduction usually removes triangles through itera-

tive application of local operations Garland and Heckbert (1997) or element cluster-

ing Cohen-Steiner et al. (2004), which relies on existing mesh vertices and connectiv-

ity. As a result, this method is only suitable for generating the medium-levels of LOD,

while introducing serious artifacts when generating low-polys for meshes with exces-

sive topology complexity as illustrated in Figure 4.12 and Figure 4.21. In the second

pipeline, while UV-generation and texture baking can be done via semi-automatic
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tools (e.g. Maya and Marmoset), manual meshing is the most labor(cost)-intensive

step. Therefore, we address this most urgent and challenging problem, aka, low-poly

meshing.

Many automatic re-meshing approaches exist to represent the original mesh

with a proxy and simplify the proxy mesh via a row of different techniques, e.g.,

polygonal mesh construction by plane fitting and mixed-integer optimization Nan

and Wonka (2017), cage mesh generation through voxel dilation and mesh simpli-

fication Calderon and Boubekeur (2017), shape abstraction by feature simplifica-

tion Mehra et al. (2009), extremely low-poly meshing using visual-hull boolean op-

erations Gao et al. (2022), mesh simplification through differentiable rendering Has-

selgren et al. (2021), enclosing mesh generation through alpha-wrapping with an off-

set Portaneri et al. (2022), and learning based approaches Chen et al. (2020, 2022b).

However, these re-meshing approaches either rely on heavy user interactions, need

careful parameter tweaking, or work for a limited type of model. Commercial soft-

ware also has low-poly mesh functions, but generates unsatisfactory results in many

cases. For example, in Figure 4.11, and Table 4.3, we show the generated results using

different low-poly construction modules in Simplyon AB (2022). It generates meshes

with either triangle intersections, or non-satisfactory visual appearances. It remains

to be a challenging task to automatically and robustly generate low-poly meshes for

general 3D models used in the industry.

In practice, artists still manually craft low-poly meshes to ensure that they

have a small number of triangles and preserve the visual appearance of the original

mesh as much as possible. This often involves multiple iterations of manual adjust-

ments, which incurs intensive labor work and prolonged project periods and remains

to be a bottleneck for the current fast-changing game industry. Robust and automatic

approaches that can generate satisfactory low-polys are in high demand.

From an input mesh with arbitrary topology and geometry properties, our goal

is to generate its low-poly counterpart that is visually indistinguishable from faraway
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views. The visual appearance of a 3D shape can be evaluated by its silhouette and

surface normal, while the simplicity of a low-poly mesh is typically measured by

the number of triangles. We propose a new approach to generate low-polys that is

both simple and visual-preserving, with the additional guarantees of being manifold,

watertight, and self-intersection free. These additional properties are essential for

artists to conveniently perform UV-generation and texture baking on the bare low-

poly mesh.

Our method combines the idea of mesh-reduction and re-meshing. During

the first stage, we re-mesh the high-poly to a “clean” proxy mesh and remove all the

topological complexities therein. We then aggressively reduce the element count of the

proxy mesh, while geometrically deforming the proxy to maintain visual preservation,

leading to our low-poly output.

Our method specifically requires two inputs: a high-poly mesh and a parameter

np, which represents the screen-space size of the high-poly mesh when rasterized

onto a 2D screen. In practical terms, let lp denote the 2D screen’s pixel length,

and l represent the diagonal length of the high-poly mesh’s bounding box. The

parameter np can be calculated as l/lp, signifying the maximum number of pixels

that the high-poly mesh’s diagonal could occupy across all potential rendering views.

During the first stage of our method, we build an unsigned distance field for the input

and introduce a novel offset surface extraction method to extract a d-isosurface with

d = l/np. Our algorithm not only guarantees the offset mesh is manifold, watertight,

and self-intersection-free, but also recovers the normal approximated sharp features.

During our second stage, we alternate among three steps, i.e. mesh simplification,

mesh flow process, and feature alignment, to reduce the element count of the extracted

mesh, while bringing the mesh close to the input and maintaining the aforementioned

guarantees. All three steps contain only local operations, such as edge collapse and

vertex optimization. Therefore, any local operation that violates a guarantee can be

easily rolled back.
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By construction, our algorithm is robust and automatic. The effectiveness

of our approach is demonstrated by comparing it with state-of-the-art methods and

popularly used software on a subset of the Thingi10K dataset Zhou and Jacobson

(2016) containing 3D models with varying complexities. All the data shown in this

chapter and the executable program can be found here2.

4.2 Related Works

We first review low-poly mesh generation methods and then summarize the

methods for iso-surface extraction.

4.2.1 Low-poly Meshing

Obtaining a low-poly mesh has been a research focus in computer graphics

for several decades. Early works use various mesh reduction techniques that di-

rectly operate on the original inputs through iterative local element removal. Exam-

ples involve geometric error-guided techniques Hoppe (1996); Garland and Heckbert

(1997); Lescoat et al. (2020), structure-preserving-constrained technique Salinas et al.

(2015), volume-preserving technique Lindstrom and Turk (1998), and image-driven

technique Lindstrom and Turk (2000), to name just a few. Clustering-based ap-

proaches Cohen-Steiner et al. (2004); Li and Nan (2021) provide another direction for

reducing the element count. An inclusive survey is given in Khan et al. (2022). While

these approaches are well recognized in game production pipelines, they are better

suited for reducing the mesh size of the original models to a medium level, e.g. reduc-

ing the number of faces by 20% - 80%. Unfortunately, for 3D graphics applications

running on lower-end devices, often a much coarser low-poly mesh is desired. Such

extremely low-poly meshes require topologic and geometric simplifications that are

far beyond the capabilities of these mesh reduction techniques. Unlike mesh reduc-

2https://robust-low-poly-meshing.github.io/
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tion techniques, a parallel effort aims at re-meshing, i.e., completely reconstructing a

new mesh mimicking the original one. These methods vary drastically in their tech-

niques and we classify them by their main feature into voxelization base re-meshing,

primitive fitting, visual-driven, and learning-based.

Voxelization Based Re-meshing Both Mehra et al. (2009) and Calderon and

Boubekeur (2017) rely on a voxelization of the raw inputs to obtain a clean voxel

surface. While Mehra et al. (2009) requires feature-guided re-triangulation, defor-

mation, and curve-network cleaning to generate shape abstractions for architectural

objects, Calderon and Boubekeur (2017) assumes the input meshes come with clear

separation of the inside and outside space and heavily depends on user interactions to

generate the final low-polys. Recently, Wu et al. (2022) combine voxelization-based

remeshing with patch-based simplification to generate occluders for building models

to pre-cull unseen meshes before online rendering.

Primitive Fitting Various primitives can be composed to fit an object. For exam-

ple, methods in Chauve et al. (2010); Kelly et al. (2017); Fang et al. (2018); Nan and

Wonka (2017); Fang and Lafarge (2020); Bauchet and Lafarge (2020) first compute a

set of planes to approximate patch features detected in point clouds or 3D shapes, and

then select a faithful subset of the intersecting planes to obtain the desired meshes.

However, the key challenges of this type of method are: 1) properly computing a

suitable set of candidate planes is already a hard problem by itself; 2) the complex-

ity of the resulting mesh is highly unpredictable, requiring many trial-and-error to

find a possible good set of parameters. Works using other primitives Mehra et al.

(2009); Huang et al. (2014); Yang and Chen (2021); Wei et al. (2022), such as boxes,

convex shapes, curves, etc., are also promising directions, but none of them has been

specifically dedicated for generating low-polys.
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Visual-driven Approaches Differentiable rendering Laine et al. (2020) rises as a

hot topic that enables the continuous optimization of scene elements through the guid-

ance of rendered image losses. However, most of them Luan et al. (2021); Hasselgren

et al. (2021); Nicolet et al. (2021) require an initial mesh that is typically a uniformly

discretized sphere. The key obstacle to generating low-polys via differentiable ren-

dering is that the mesh reduction cannot be modeled as a differentiable optimization

process. Although the analysis-by-synthesis type of optimizations Luan et al. (2021)

could be employed, the Laplacian regularization term used by most differentiable

rendering techniques can guide the mesh far from the groundtruth, especially in a

low-poly setting. A visual hull-based approach Gao et al. (2022) has been recently

proposed to generate extremely low-polys for building models, however, it not only

creates sharp creases for organic shapes, but also makes it hard to control the target

element number.

Learning-based Methods A conventional 3D mesh reconstruction pipeline is com-

posed of three steps: plane detection, intersection, and selection, while learning-based

methods enable alternative pipelines. As an example, by converting it to a BSP-net,

Chen et al. (2020) demonstrates that low-polys can be extracted from images. How-

ever, this method shares the common shortcomings of learning approaches: a large

dataset is required for the network training, and the learned model works only for

meshes of a similar type. It further requires the voxelizations of the dataset to have

well-defined in/out segmentation. Furthermore, the generated meshes inherit the is-

sues of polyfit-like Nan and Wonka (2017) approaches: it creates sharp creases that

are not present in the high-poly, and parameter tuning is difficult. By embedding

a neural net of marching tetrahedral into the differentiable rendering framework,

Munkberg et al. (2022) can optimize the meshes and materials simultaneously. As

demonstrated in their work, by controlling the rendered image resolution, it can gen-

erate 3D models in a LOD manner. But these extended features brought by learning

approaches are beyond the scope of our investigation.
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Input Mesh Mesh Extraction Mesh Optimization

(a) Mi (36779, 0) (b) Md (761821, 1076) (c) Mint (23805, 1088) (d) Mint (9433, 706) (e) Mo (2703, 390)

Figure 4.2: The pipeline of our algorithm. The notation (•, •) represents (number of
faces, light field distance to the input mesh), where the latter is a measure of visual
similarity between two 3D shapes, introduced by Chen et al. (2003). (a): The input
high-poly surface, which is not necessarily manifold, orientable, or self-intersection
free. In this example, the input surfaceMi is not 2-manifold, with 114 non-2-manifold
edges, has 751 components and is not orientable (the back faces are rendered in
black). It has over 36k faces, among which 23345 faces are self-intersected. (b): The
extracted iso-surface Md with d = l

200
, where l is the bounding box diagonal size of

Mi (Section 4.3.1). It is an orientable, water-tight, self-intersection free mesh with 19-
components and 761k faces. (c-e) Our mesh optimization step (Section 4.3.2), during
which we apply mesh simplification, flow, and alignment. While the simplification
step may result in a slight increase in LFD, the subsequent flow and alignment steps
enhance visual similarity. Consequently, the overall optimization step progressively
reduces the light field distance and simplifies the mesh, and the intermediate meshes
denoted as Mint. The output Mo has only 2703 faces. Our approach resolves the
existing topologic (non-manifoldness) and geometric issues (self-intersection), and
approximates the high-poly with 7.3% faces.

4.2.2 Iso-surfacing Algorithms

The marching cubes (MC) algorithm was proposed concurrently by Lorensen

and Cline (1987) and Wyvill et al. (1986) for reconstructing iso-surfaces from discrete

signed distance fields. Several follow-up works were proposed to solve the tessellation

ambiguities in each cube Dürst (1988); Nielson and Hamann (1991); Matveyev (1994);

Chernyaev (1995); Nielson (2003, 2004). One of the best methods is the marching

cubes 33 (MC33) Chernyaev (1995), which enumerates all possible topologic cases

based on trilinear interpolation in the cube. The follow-ups resolve non-manifold

edges in MC33 Lopes and Brodlie (2003); Custodio et al. (2013). MC33 was correctly

implemented by Vega et al. (2019) after resolving the defective issues of the previous
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implementations Lewiner et al. (2003); Custodio et al. (2013). However, none of these

methods is able to recover sharp features.

To capture sharp features of the iso-surface, Kobbelt et al. (2001) first in-

troduced an extended marching cubes method (EMC) to insert additional feature

points, given that the normals of some intersecting points are provided. Dual con-

touring (DC) Ju et al. (2002) adapted this idea with Hermite data (the gradient of

the implicit surface function). They proposed to insert one dual feature point in-

side a cube and then connect the dual points to form an iso-surface. DC does not

need to perform the edge-flip operations required by Kobbelt et al. (2001), but of-

ten generates non-manifold surfaces with many self-intersections. The non-manifold

issue was later addressed in Ju and Udeshi (2006), while the self-intersection issue

was addressed in Schaefer et al. (2007). However, none of these two methods solves

both the non-manifold and self-intersection problems simultaneously. Dual Marching

Cubes (DMC) Schaefer and Warren (2004) considers that the dual grid aligns with

features of the implicit function, and extracts the iso-surface from the dual grid. DMC

can preserve sharp features without excessive grid subdivisions as required by DC.

Unfortunately, DMC still does not guarantee the generated mesh is self-intersection-

free. Manson and Schaefer (2010) avoided self-intersections by subdividing each cube

into multiple tetrahedra, and then applying marching tetrahedra (MT) to extract the

iso-surface Doi and Koide (1991). This approach solves the self-intersection prob-

lems in the DMC approach, but the division of multiple tetrahedra, together with

the employed octree structure, makes the algorithm either generate an overly dense

mesh or require trial-and-error for suitable octree depth parameter settings. A survey

about these approaches can be partially found in de Araújo et al. (2015). Recently,

Portaneri et al. (2022) proposed an algorithm to generate watertight and orientable

surfaces that strictly enclose the input. Their output is obtained by refining and

carving the 3D Delaunay triangulation of the offset surface, however, still without

the feature-preserving property.

There are also several learning-based approaches for iso-surface extraction.
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Deep marching cubes Liao et al. (2018) and deep marching tetrahedra Shen et al.

(2021) learn differentiable MC and MT results. However, none of them can capture

the sharp features of the initial surface. Neural marching cubes Chen and Zhang

(2021) and Neural dual contouring Chen et al. (2022a) train the network to capture

the sharp features without requiring extra Hermite information. However, the former

generates self-intersected meshes, and the latter leads to non-manifold results. In

Table 4.1, we summarize these methods and show their strength and weakness in

terms of topologic and geometric properties: manifoldness, self-intersection-free, and

sharp feature preservation.

Method Manifold
Free of Self-
Intersection

Preserve
Features

Lorensen and Cline (1987)
√ √

×
Wyvill et al. (1986)

√ √
×

Chernyaev (1995)
√3 √

×
Doi and Koide (1991)

√ √
×

Kobbelt et al. (2001)
√

×
√

Ju et al. (2002) × ×
√

Ju and Udeshi (2006)
√

×
√

Schaefer et al. (2007) ×
√ √

Manson and Schaefer (2010)
√ √ √

Portaneri et al. (2022)
√ √

×
Liao et al. (2018)

√
× ×

Shen et al. (2021)
√

× ×
Chen et al. (2021a)

√
×

√

Chen et al. (2022a) ×
√ √

Table 4.1: A brief summary of the existing methods by their capabilities of main-
taining geometry and topology properties. A more detailed survey can be found
in de Araújo et al. (2015).

3Although the initial paper results in non-manifold edges, this artifact was fixed by the follow-up
works Lopes and Brodlie (2003); Custodio et al. (2013)
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4.3 Method

Given the input of a polygonal mesh Mi, a maximum number of screen size np

(i.e. the number of pixels covered by the diagonal length of the input’s bounding box),

and an optionally user-specified target number of triangles nF , we seek to generate a

triangle mesh Mo with the following properties:

Pro.I The number of triangles in Mo is either minimized or equals to nF if provided

as a parameter;

Pro.II Mo is indistinguishable from Mi when rendered from a faraway view (a view

where the diagonal length of the bounding box of Mi is less than np pixels);

Pro.III Mo is both topologically and geometrically clean, i.e., water-tight, manifold,

and intersection-free.

These three properties of Mo ensure rendering quality and enable any downstream

geometric processing on it to have high computational efficiency, requiring no mesh

repairing steps. The level of visual preservation in our second property is measured

by Silhouette difference and the normal difference between Mi and Mo. A similar

normal indicates Mo preserves the sharp features of Mi as much as possible.

We follow several principles to design our approach: 1) We make no assump-

tions on the topologic or geometric properties of the input, allowing our approach to

handle any models created in the wild; 2) We adopt an interior-point optimization-

like strategy to realize the topology and geometry properties of Pro.III one by one:

once a property is satisfied, it will be maintained for the rest of the steps; 3) We value

robustness with the highest priority, so that our approach can process any inputs cre-

ated by different domains of applications. Under guaranteed robustness, we further

attempt to improve the computational efficacy to the greatest extent possible.

136



Overview We tackle this problem in two main stages (Figure 4.2), namely, mesh

extraction (Section 4.3.1), and mesh optimization (Section 4.3.2). During the mesh

extraction stage, we first compute an unsigned distance field for Mi, then introduce a

novel iso-surface mesh extraction approach for a positive offset distance d (d = l/np as

mentioned in Section 3.1), and finally remove all invisible disconnected components

from the extracted iso-surface to obtain a mesh Md. Our generated Md optimally

recovers the sharp features implied by the d−iso-surface of the distance field, and

guarantees watertightness, manifoldness, and free of self-intersections. The purpose

of this stage is to generate a “clean” proxy meshMd of the inputMi that possibly has

“dirty” topologic and geometric configurations. Our second mesh optimization stage

involves a while-loop of three sequential steps: simplification, flow, and alignment.

The simplification step aims to reduce the number of triangles of Md by performing

one pass of quadric edge-collapse decimation for the entire mesh; the flow step aims to

pull Md close to Mi via a per-vertex distance minimization; and the alignment step

aims to optimize the surface normal of Md so that the sharp features are maintained,

which is achieved through local surface patch optimization. When the while loop

stops, we output the final meshMo. Since all three steps contain only local operations,

the guarantees of Md achieved during the first stage can be easily maintained by

rolling back or skipping any operations that violate a guarantee. In the following

sections, we provide technical details for each stage.

4.3.1 Mesh Extraction

Given Mi and d, our goal is to extract an d−iso-surface mesh Md that is

watertight, manifold, feature-preserving, and self-intersection-free. Ensuring all these

properties simultaneously is a challenging task. As an example, simply applying the

well-known algorithm of MC33 cannot capture sharp features of the iso-surface as

shown in Figure 4.3. We tackle the mesh extraction problem by re-meshing the ex-

tracted local surface patches from templates of MC33. We selectively insert additional

points to refine these local surface patches. Our key technique lies in the proposed
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(a) Input (b) MC33 (c) Ours

Figure 4.3: The iso-surface meshes of a CAD model “block”. Compared with classic
MC33 algorithm Chernyaev (1995), our iso-surfacing approach achieves a better visual
similarity by recovering sharp features.

mesh refinement technique that 1) guarantees topologically watertight and manifold

properties and 2) captures geometric sharp features without causing self-intersection.

We first compute a proper discretization of an unsigned distance function defined for

Mi, then analyze the connectivity changes when inserting new points to the MC33

templates to maintain the topology guarantees of the resulting mesh. After that, we

focus on the geometry fidelity of the resulting mesh, i.e. feature-preserving and self-

intersection-free. For the extracted mesh Md, we finally remove invisible components.

Discretization An unsigned distance field is defined as a function:

f(p) := min
q∈Mi

∥p− q∥, (4.1)

where p ∈ R3. The implicit function of d-iso-surface is f(p) = d. Since the explicit

representation of the d-iso-surface is intractable, we follow the general pipeline of

prior iso-surfacing approaches that first voxelize the ambient space around Mi, and

then approximate the solution through extracting local surface patches within each
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voxel. Since the local patches are typically simple, the voxel size plays an important

role in the to-be-extracted mesh. A coarse voxel size can miss important solutions,

d

Figure 4.4: The d-iso-
surface (green lines) of
the input mesh (red line)
cannot be captured if the
voxel size is larger than
2d.

such as the one illustrated in Figure 4.4, where no d-iso-surface

could be extracted if a grid size large than 2d is used, while

an excessively small voxel size will result in a dense grid that

is time-consuming to compute (Figure 4.15). By default, we

choose the edge length of a voxel to be d/
√
3 to avoid geometric

feature losses as illustrated in the Figure 4.4.

Topologic Guarantees For each voxel, we employ exist-

ing templates to decide the iso-contours Lorensen and Cline

(1987); Chernyaev (1995); Custodio et al. (2013), and then insert an additional point

for each contour. The templates of either the original MC Lorensen and Cline (1987)

or MC33 Chernyaev (1995); Custodio et al. (2013) can be used to generate the iso-

contours since they both ensure the extracted mesh is watertight and manifold. We

choose MC33 in this work since it covers more linear interpolation cases and re-

solves the ambiguity in MC, thus extracting iso-surface meshes with generally smaller

genus Chernyaev (1995); Custodio et al. (2013). As illustrated in Figure 4.23, we in-

sert one vertex per iso-contour surface if it is homemorphic to a disk, where the

iso-contour surfaces of cases 4.1.2, 6.1.2, 7.4.2, 10.1.2 and 12.1.2, and one iso-contour

of case 13.5.2 are excluded since they have two boundaries. This scheme ensures that

the additional vertices neither bring any non-manifold configurations nor create holes

in the resulting mesh.

Feature Vertex Insertion We use one vertex per local patch with a disk-topology

to provide more degrees of freedom to capture sharp features. Its position can be

computed by minimizing the distance to patch vertices along the normal directions:

argmin
x

∑
i

(npi
· (x− pi))

2 , (4.2)

139



(a) Without constraints (b) With constraints (c) Polyhedron0 (d) Polyhedron1

Figure 4.5: Illustration of our feature-aware iso-surface extraction step for MC33 case
4.1.1. The cube vertices with iso-value smaller than d is marked as blue, while the red
vertices are the opposite. The iso-points are marked as pink, and the feature points
are marked as yellow. Without forcing the feature points within their belonging
polyhedra (c, d), it is easy to obtain a mesh with self-intersections (a).

where x is the desired position, pi and npi
denote an iso-contour vertex and its

normal, respectively, and the summation goes through all patch vertices. However,

without any constraints, x may be arbitrarily positioned and cause surface intersec-

tions in the extracted mesh. This issue is deteriorated by the template cases with

multiple iso-contours. Figure 4.5 illustrates such as example using MC33 case 4.1.1.

We propose a simple approach to recover feature vertices without mesh in-

tersections. Given a voxel, we subdivide it into convex polyhedra within which the

feature vertices are constrained. As illustrated in Figure 4.24, the subdivision is per-

formed according to the number and the different configurations of the iso-contours

with a disk-topology. For example, for cases with only a single disk-topology iso-

contour, such as case 1, no subdivision is involved and the polyhedron is the voxel

itself, and for those with multiple iso-contours, such as case 4.1.1, convex and planar

polygons are needed to partition the voxel into non-overlapping polyhedra. If we

constrain the position of the inserted vertex stays inside its belonging polyhedron,

the extracted mesh is guaranteed to incur no self-intersections.

Accordingly, for each inserted vertex, we obtain its coordinate x by solving a
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linear constrained quadratic programming:

argmin
x

∑
i

(npi
· (x− pi))

2

s.t. ns · (x− cf ) < 0, ∀ns ∈ Ns

(4.3)

where Ns is the set of face normals of the corresponding polyhedron of x, and cf is the

center of the corresponding polyhedron face. To compute npi
, if pi ∈Mi, we simply

use the mesh normal, otherwise, we first solve for any p⋆
i ∈ argminp∈Mi

∥pi−p∥ and

then let npi
:= (pi − p⋆

i )/∥pi − p⋆
i ∥.

Feature Extraction The previous step recovers vertices on sharp features of the

d-iso-surface. But their connections may not align well with the sharp edges, the

highlighted region in Figure 4.6b demonstrates this issue. Furthermore, since the

sharp features exist in a small fraction of voxels, we aim at a minimal increase in the

additional feature edges and vertices by inserting only those feature vertices on sharp

features and using the original MC33 templates as much as possible. However, we do

not know the sharp features of the d-iso-surface as prior. Therefore, we introduce a

posterior approach to recover the necessary feature curves, which involves two phases:

Feature Edge Adjustment, and Feature Filtering. The first phase generates an iso-

surface mesh by considering all inserted feature vertices as sharp features. With this

iso-surface mesh, we can use existing automatic feature identification approaches to

obtain sharp features. The second phase generates the actual iso-surface mesh Md by

blending the iso-contour patches containing the detected feature vertices with those

original MC33 patches that do not contain any sharp features.

Feature Edge Adjustment During the first phase, we insert a feature vertex for

every disk-topologic iso-contour patch. We then perform an edge-flip operation for

every mesh edge if the flipped edge connects two inserted feature vertices (see Al-

gorithm 2 for more details). To ensure the self-intersection-free guarantee, we skip

those edge-flips that may cause self-intersections. This phase can already produce an
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(a) Input mesh Mi (b) Unflipped feature mesh (c) Flipped feature mesh (e) Final iso-surface Md

Figure 4.6: Our iso-surface extraction pipeline. We mark the initial feature points
in the third figure and the remaining ones after applying feature graph filter in the
last figure (the yellow points). Our post process successfully resolves the sawtooth
artifacts around the ear of the character (the top two zoomed-in figures in the third
and last columns, with the top ones are rendered without wireframes), but still keeps
the major sharp features, for example, the bottom zoomed-in figures.

iso-surface mesh that satisfies the desired topologic and geometric properties. How-

ever, as mentioned earlier, this iso-surface mesh contains more elements than desired

and those unnecessary “fake” sharp features are noisy and not visual-appealing (see

the top two zoomed-in figures in Figure 4.6c).

Feature Filtering During the second phase, we first extract a feature graph from

the resulting mesh of the first phase. The feature graph is composed of a set of feature

curves where each curve is a sequence of mesh edges with its dihedral angle smaller

than θ0 (see Gao et al. (2019) for details). We then mark a feature curve as valid if

it is composed of more than l0 mesh edges. The valid feature curves are considered

to contain “real” sharp features to recover. After that, for each iso-contour patch, we

keep those inserted feature vertices if they are on the valid feature curves, otherwise,

we use their original template. This step removes a lot of noisy, “fake” feature edges.

Finally, we perform the edge flip algorithm Algorithm 2 once more to extract the

d-iso-surface mesh Md.

Our feature recovery algorithm performs well for the models with various fea-

tures that can be represented by piecewise line segments, e.g. sharp curves in Fig-
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ure 4.3 and the eye and beak contours in Figure 4.12.

Algorithm 1 Iso-surface Extraction

Input: Mi, d, θ0, l0
Output: Md

1: G← gridDiscretization(Mi, d) ▷ generate the grids
2: Compute f(p) for all grid points p in G ▷ Equation 4.1
3: for each cube ∈ G do ▷ iso-surface extraction
4: Lookup for the template case ▷ Chernyaev (1995), Figure 4.23
5: for each Disk-topologic patch in cube case do
6: Compute the iso-points on cube edges
7: Form the quadratic program ▷ Equation 4.3, Figure 4.24
8: Solve for feature vertices ▷ Figure 4.23
9: end for
10: end for
11: Md ← edgeFlip(Md) to connect feature vertices ▷ Algorithm 2
12: Md ← featureFilter(Md, θ, l0)
13: Md ← removeInterior(Md)

Interior Removal Since we use an unsigned distance function, our final extracted

iso-surface Md may have interior components, which are totally invisible. Given the

generated mesh Md are watertight and free of self-intersection, we can apply the in-

and-out test and remove the components which is purely inside of any of the others.

4.3.2 Mesh Optimization

Starting from a mesh Md that is watertight, manifold, feature preserving,

and self-intersection-free, we now introduce an iterative mesh optimization approach

to obtain a final Mo that satisfies our three desired properties, i.e., Pro.I-III. As

shown in Algorithm 3, our optimization involves a maximum of N iterations of three

sequential steps: simplification, flow, and alignment. We stop the iterations until

either the Hausdorff distance between the simplified meshes of two consecutive loops

(relative change) is smaller than ϵ, the loop number reaches N , or the target face

number reduces below nF , where the first condition has the highest priority by default.
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Algorithm 2 Edge Flip

Input: Md

Output: Md ▷ mesh after edge-flips
1: Q← {}
2: BVHTree T
3: T.build(Md) ▷ Karras (2012)
4: for each edge e ∈Md do
5: if e.oppVs are feature vertices then
6: Q.push(e) ▷ opposite vertices are feature vertices
7: end if
8: end for
9: while Q ̸= {} do
10: e← Q.top()
11: if e was not flipped before then
12: if isIntersectionFree(Md,T, e) then
13: flipEdge(Md, e)
14: T.refit(Md) ▷ update BVH Karras (2012)
15: end if
16: end if
17: end while

Each of the three steps involves only local operations. To ensure our optimization

proceeds towards the generation of Mo with the desired properties, we perform the

following checks for the meshes before and after applying a local operation:

1. Topology consistency: the updated mesh is manifold, watertight, and has the

same genus and the number of components as the mesh before applying the

local operation;

2. Self-intersection-free: the updated mesh is free of intersections.

Mesh Simplification This step aims to achieve the first property of Mo, i.e., Mo

contains as few triangles as possible. We perform an entire pass of the standard edge-

collapse operation for all edges of Mo to reduce as many faces as possible or match

the target face number nF , where the coordinate of the newly generated vertices
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are determined by the quadratic edge metric (QEM) Garland and Heckbert (1997)

weighted by virtual planes for each edge to avoid the degeneracy in planar regions.

d+ ϵ

d

d

d

Mi Mo

Figure 4.7: Collapsing
the yellow edge reduces
the distance from Mo to
Mi (d+ϵ→ d), but leads
to an undesirable visual
appearance.

Importantly, the topologic and geometric validity of Mo is

maintained during the simplification process by skipping those

edge-collapse operations that may violate the aforementioned

checks. Moreover, to ensure we get closer to Mi, we also

skip the collapse operations which increase the distance be-

tween affected local triangle patches and Mi. For efficiency

concerns, we only compute the one-sided distance from the

local patch to the input mesh. This one-sided check may re-

sult in the acceptance of unexpected collapses, as illustrated

in Figure 4.7. To overcome this, we further skip the operations

leading to a Hausdorff distance larger than d, where the two

involving meshes are the ones before and after the local operation and the Hausdorff

distance is computed approximately by sampling points on the local triangle patches

as in Cignoni et al. (1998). We show the comparison in Figure 4.8. Without the

guarantee of a distance decrease, we will lose some important information. Without

the guarantee of a small Hausdorff distance, we may end up with larger silhouette

difference and normal difference, that is, worse visual similarity.

(a) Input (b) Without cond1,2 (c) Without cond1 (d) Without cond2 (e) Ours

(0, 0) (0.23, 0.43) (0.032, 0.19) (0.0055, 0.12) (0.0033, 0.11)

Figure 4.8: The results of different simplification conditions. (•, •) denotes (silhouette
difference, normal difference). cond1: skip the collapse which increases the vertex-
surface distance to Mi; cond2: skip the collapse which results a large Hausdorff
distance. After applying the both conditions, we achieve a better visual score.
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Mesh Flow Our mesh flow step brings Mo geometrically close to Mi and reduces

the silhouette visual differences between the two meshes. The detailed algorithm is

provided in Algorithm 3 (Line 7-11).

Algorithm 3 Mesh Optimization Process

Input: Mi, Md, d, nF N , r, ϵ
Output: Mo

1: Mo ←Md

2: l← bboxSize(Mi) ▷ bounding box diagonal size
3: for i = 0 to N do
4: M ′ ←Mo

5: Mo ←meshSimplification(Mi,Mo, d, nF ) ▷ Algorithm 5

6: M̃ ←Mo

7: for each vertex v ∈Mo do ▷ mesh flow step
8: v∗ ← argminu∈Mi

∥u− v∥
9: dv ← r(v∗ − v) ▷ successive flow, r < 1
10: v ← localUpdate(Mo,v, dv) ▷ Algorithm 4
11: end for
12: for each vertex v ∈Mo do ▷ feature alignment step
13: vopt ← featureAlignment(M̃ ,Mo,v) ▷ Algorithm 6
14: dv ← vopt − v
15: v ← localUpdate(Mo,v, dv) ▷ Algorithm 4
16: end for
17: if Hausdorff(Mo,M

′) < ϵ · l then
18: Break ▷ update is small enough
19: end if
20: end for

When actually applying the mesh flow process, for each vertex v in Mo, we

find its Euclidean-distance-wise closest point v∗ of Mi and successively push v to v∗

along the vector dv = v∗ − v. Instead of updating v to v∗ directly, we deform v

towards v∗ based on a constant fractional ratio r of the vector, which allows more

moving space for the entire mesh and reduces the chance of optimization stuck when

Mo is still far fromMi. We also apply a simple line search for the self-intersection-free

check to find the maximum step size during the local deformation (Algorithm 4).
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Algorithm 4 Local Update

Input: M , v, dv
Output: updated v
Note: v is a vertex of M .

1: α← 1
2: while v + αdv leads to self-intersections do
3: α← α/2
4: end while
5: return v + 0.95αdv ▷ Using 0.95 to avoid numerical error

Feature Alignment The previous mesh flow can stretch the mesh unanimously,

breaking features and creating dirty inputs for subsequent mesh simplification and

flow procedure (see Figure 4.9 for an example). We thus introduce a feature alignment

step. For each vertex v, we seek an optimized position vopt by minimizing the shape

difference between the local surface of vopt and that of v before mesh flow:

E(v) :=
∑

f∈N1(v)

∥∥∥∥ nf

∥nf∥
− ñf

∥ñf∥

∥∥∥∥2 , (4.4)

where we use the normal disagreement to approximate the shape difference (Line 6

in Algorithm 6), N 1(v) is the faces within the 1-ring neighbor of v, and nf , ñf

are the unnormalized face normal of the current mesh and the one before the flow

respectively. The summation takes over all faces within the 1-ring neighborhood of

vertex v. This face normal difference summation approximates the vertex normal

difference. Notice that Equation 4.4 is a nonlinear function, which can be solved by

the classical Newton’s Method. In order to improve the efficiency, we instead treat the

∥nf∥ as constant (equal to the value at the beginning of the alignment step, denoted

as cn) and solve a quadratic approximation of Equation 4.4:

E(v) :=
∑

f∈N1(v)

∥∥∥∥nf

cn
− ñf

∥ñf∥

∥∥∥∥2 . (4.5)

Once we obtain the corresponding vopt that minimizes Equation 4.5, we update v to

be vopt with the line search Algorithm 4 to prevent self-intersections. Given this local
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Algorithm 5 Mesh Simplification

Input: Mi, Mo, d, nF

Output: simplified mesh Mo

Notes: Mi is the reference mesh, nF is optional
1: Form priority queue Q ▷ Garland and Heckbert (1997)
2: BVHTree T
3: T.build(Mo) ▷ Karras (2012)
4: while Q ̸= {} do
5: e← Q.top()
6: if e has been visited before then
7: continue ▷ has been collapsed
8: end if
9: if topologyConsistencyCheck(Mo, e) failed then
10: continue ▷ Cignoni et al. (2008)
11: end if
12: if not isIntersectionFree(Mo,T, e) then
13: continue ▷ collapse will introduce intersections
14: end if
15: Me ← sub-mesh of Mo adjacent to e
16: M ′

e ←Me after collapse
17: if dist(Me →Mi) < dist(M ′

e →Mi) then
18: continue ▷ collapse increases the distance to Mi

19: end if
20: if dist(Me →M ′

e) > d or dist(M ′
e →Me) > d then

21: continue ▷ distance update is too large
22: end if
23: collapseEdge(Mo, e) ▷ satisfy all desired properties
24: T.refit(Mo) ▷ update BVH Karras (2012)
25: if nF is given and Mo.faceNumber ≤ nF then
26: break
27: end if
28: end while
29: return Mo
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Algorithm 6 Feature Alignment

Input: M̃ , Mo, v
Output: updated v which preserves features
Require: M̃ and Mo has the same mesh connectivity

1: for each f ∈ N1(v) do ▷ loop over adjacent faces
2: nf ← e0 × e1 ▷ unnormalized face normal of Mo

3: cn ← ∥nf∥ ▷ get the initial norm

4: ñf ← ẽ0 × ẽ1 ▷ unnormalized face normal of M̃
5: end for
6: Fix cn, get vopt by minimizing Equation 4.5 ▷ quadratic program
7: return vopt

(a) Input (b) Without feature alignment (c) Ours

Figure 4.9: Without feature alignment step, we will end up with the results with
“spikes” (see zoomed-in region for details).

operation only slightly updates the mesh, our quadratic approximation leads to small

errors, but in turn, significantly boosts performance (turning a non-convex problem

to an unconstrained quadratic program).

4.3.3 Self-intersection Check Acceleration

Starting from an intersection-free 3D triangle mesh, our low-poly re-meshing

pipeline could introduce intersections when performing the edge flips during mesh

extraction, the edge collapses during mesh simplification, and the vertex optimization
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Figures Tn(s) T ′
n(s) T ′

n/Tn T ⋆
n (s) T ⋆

n/Tn Tt(s) T ′
t(s) T ′

t/Tt T ⋆
t (s) T ⋆

t /Tt
Figure 4.2 23.80 2587.09 108.71 111.59 4.69 119.31 2689.11 22.54 213.63 1.79
Figure 4.6 16.15 2847.69 176.31 119.82 7.42 115.86 2955.23 25.51 224.50 1.94

Figure 4.11(d)0 21.98 2653.21 120.70 158.18 7.20 120.35 2769.56 23.01 266.17 2.21
Figure 4.12(g)0 13.51 2409.66 178.40 70.66 5.23 93.06 2497.08 26.83 156.08 1.68
Figure 4.12(g)1 10.24 1377.05 134.51 43.98 4.30 57.25 1421.92 24.84 87.36 1.53
Figure 4.21(j)0 58.93 7958.25 135.05 552.99 9.38 360.12 8291.89 23.03 885.49 2.46
Figure 4.21(j)1 5.92 819.00 138.37 39.56 6.68 29.79 846.21 28.41 65.04 2.18
Figure 4.14(d) 13.92 2284.73 164.08 106.71 7.66 99.87 2382.30 23.86 200.90 2.01
Figure 4.22(a)2 15.65 2283.99 145.93 96.42 6.16 98.12 2376.82 24.22 187.28 1.91

Average 20.01 2802.30 144.67 144.43 4.69 121.52 2914.46 24.69 254.05 1.79

Table 4.2: A speedup summary of self-intersection checks (used in edge flip, edge
collapse, and vertex optimization steps) for some of the figures shown in this chapter.
The upper index of the figures indicates the corresponding row of that figure. Tn: the
time cost of the neighboring triangle intersection check only using surface normal test.
T ′
n: the same time information with full normal cone test (surface normal + contour

test). T ⋆
n : the same time information but applying parallel triangle pairs intersection

check. Tt, T
′
t , T

⋆
t : the total time information of the whole intersection-check process

(neighboring triangle intersection check + BVH check), corresponding to Tn, T
′
n, T

⋆
n .

during the mesh flow and the feature alignment steps. Note that we say a mesh has

intersections when any of its two triangles overlaps, or any of its two non-adjacent

triangles touch or intersect.

Before discussing our accelerated check of self-intersections, we first introduce

the necessary notations. For a vertex v, we denote N i(v) as the set of all triangles

that are bounded within its i-th ring neighborhood. For example, for the bottom

left image in Figure 4.10, N 1(v) is the red region, and N 2(v) is the union of red

and green region4. We further denote Me as the local neighborhood related to a

certain local operation, where Me endows different definitions. For edge flip, we

define Me = {f1, f2} where f1 and f2 are the two neighboring triangles of e. For edge

collapse, Me = N 1(v′) where v′ is the newly created vertex. For vertex optimization

(otherwise known as smoothing), we let Me = N 1(v). Moreover, we let Ms be the

sub-mesh formed by all faces that share at least one vertex with Me but not in Me

(the green regions in Figure 4.10). Finally, we let M1 = Ms

⋃
Me. The rest of the

4These sets of triangles are called “topological neighborhoods”, introduced in Attene (2010)

150



mesh are denoted as Mr (the blue regions in Figure 4.10).

edge flipvertex update

edge collapse Mr

Ms

Me

Figure 4.10: Edge or vertex operation illustration. M1 = Me

⋃
Ms.

We note that a mesh-reduction operation does not introduce self-intersection

iff the following two conditions hold:

1. Me does not intersect Mr;

2. M1 is self-intersection free.

Here we skip the intersection check within Ms, Mr and between Ms and Mr, be-

cause Ms and Mr are the unchanged sub-mesh of the mesh before the local opera-

tion, which is free of self-intersections. In general, the two conditions above can be

check by conventional triangle-triangle intersection test. However, checking the first

condition above is computationally inefficient, especially when Mr contains lots of

triangles. Given Me does not share any vertex or edge with Mr, this part can be

handled by standard BVH-based collision detection. The detailed algorithm is given

in Algorithm 7.
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Algorithm 7 BVH Meshes Intersection Check

Input: Me, Mr,T (BVH tree of Mr)
Output: whether Me intersects with Mr

Notes: all faces Me do not share vertices with the faces in Mr

1: for each face f ∈Me do
2: f1 ←T.closestFace(f) ▷ get the closest face
3: if triTriIntersection(f , f1) then
4: return true ▷ does intersect
5: end if
6: end for
7: return false ▷ does not intersect

Unfortunately, for the second case, all the faces in Me share at least one

vertex with the faces in Ms. The BVH-based acceleration is no longer efficient, as

the shared features always lead to failure in BVH culling. In this scenario, the naive

approach involves |Me| · |Ms| pairs of triangle-triangle intersection check. Although

|Me| and |Ms| are usually small for one local operation, the three edge flip, edge

collapse, and vertex optimization operations will typically be executed for a massive

number of times during the entire re-meshing pipeline. In practice, we find that

this M1 intersection-free check takes ∼ 50% of the computational time of the whole

intersection check process. Avoiding unnecessary triangle-triangle intersection checks,

which is expensive to compute, will lead to a dramatic speedup. To this end, we note

that M1 is open, and to check whether a mesh with boundaries has self-intersection,

Volino and Thalmann (1994) introduce a theory providing a sufficient condition: Let

M be a continuous surface, bounded by ∂M , M is self-intersection free if there exists

a vector n, such that:

1. Surface Normal Test : For every point p ∈ M , np · n > 0, where np is the

surface normal at p;

2. Contour Test : The projection of the contour ∂M along the n is not self-

intersected.

They also provide a discrete version for triangle meshes:
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1. Surface Normal Test : The angle of the normal cone formed by all triangle face

normals is less than π
2
;

2. Contour Test : The projection of the mesh boundary ∂M along the normal cone

axis is not self-intersected.

For the first test, one can use the tight normal cone merging algorithm mentioned by

Han et al. (2021), and for the second test, Wang et al. (2017) proposed a side-sign

based unprojected contour test.

Surface normal test only need |M1| times normal cone expansion Han et al.

(2021). As shown in Table 4.2, only applying Surface Normal Test results in ∼145×

speedup compared with the full normal cone test, and 4.69× speed up compared with

parallel triangle-triangle pair check. Moreover, this normal cone test acceleration

speeds up the whole self-intersection check process by 24.69× and 1.79× compared

with the full normal cone test and parallel triangle-triangle pair check, respectively.

Surface normal test alone in practice is enough to generate a surface without self-

intersection. We perform only the surface normal test during the self-intersection

check, and if it fails, we apply direct triangle-triangle pair checks. Although the

surface normal test alone is not sufficient to ensure free of self-intersection of M1, in

practice, we find our final output Mo is always self-intersection free. We also perform

a self-intersection check of Mo. If Mo intersects itself, we remove the surface normal

test filter, and re-run the algorithm with direct triangle-triangle pair checks.

4.4 Experiments

We implement our algorithm in C++, using Eigen for linear algebra routines,

CGAL Brönnimann et al. (2022) for exact triangle-triangle intersection check, li-

bigl Jacobson et al. (2018) for basic geometry processing routines. We use the fast

winding number Barill et al. (2018) for interior components identification. We imple-

ment the bottom-up BVH traversal algorithm mentioned in Karras (2012) to refit the
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BVH for self-intersection check, and use Metro Cignoni et al. (1998) for Hausdorff

distance computation. Unless particularly mentioned, we set np = 200, θ0 = 120◦,

l0 = 4, N = 50, r = 1
8
, and ϵ = 10−4 by default and run our experiments on a

workstation with a 32-cores Intel processor clocked at 3.7Ghz and 256Gb of memory,

and we use TBB for parallelization.

Dataset We test our algorithm on a subset of Thingi10K Zhou and Jacobson (2016),

where we randomly choose 100 models while filtering out those with the number

of triangles smaller than 5000. For this dataset, the average number of faces and

disconnected components are 120k and 10. The average number of non-manifold

edges and self-intersected triangle pairs are 2197 and 6729, respectively.

4.4.1 Metrics

We evaluate the generated low-poly meshes from several aspects, including

the number of contained triangles, topology (watertightness and manifoldness) and

geometry (self-intersection-free) guarantees, and the visual preservation of the input.

Similarity Metrics For visual similarity measurement, we employ the following

metrics:

1. Hausdorff distance (HD), used to measure the geometrical distance between two

3D shapes;

2. Light field distance (LFD) Chen et al. (2003), which measures the visual simi-

larity between two 3D shapes;

3. Silhouette and normal differences Gao et al. (2022), denoted as SD and ND

respectively;
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4. Peak signal-to-noise ratio (PSNR) computed by rendering the high- and low-

poly meshes with 48 camera views and averaging the PSNR of the 48 pairs of

images.

Among all these metrics, a smaller HD, LFD, SD, or ND indicates a better visual

similarity, while for PSNR the higher the better.

Methods #V #F #C rf rm rw rs
PSNR LFD SD ND HD

ave sd ave sd ave sd ave sd ave sd
Simplygon1 703 1631 8 9.0% 37.0% 34.0% 100% 24.79 2.73 844.94 1806.07 0.013 0.016 0.049 0.030 0.024 0.016
Simplygon2 763 1631 2 62% 93.0% 93.0% 100% 25.05 2.41 347.50 188.68 0.0048 0.0043 0.040 0.064 0.022 0.020
Blender 842 1803 12 11.0% 19.0% 14.0% 100% 23.68 3.51 1220.74 1637.12 0.030 0.058 0.071 0.092 0.040 0.052
QEM 707 1629 9 5.0% 12.0% 10.0% 100% 25.18 2.87 748.98 1059.45 0.012 0.021 0.041 0.049 0.031 0.023
Gao et al. 458 912 2 60.7% 91.0% 91.0% 89.0%† 22.55 2.63 1254.85 3978.50 0.020 0.055 0.063 0.059 0.078 0.073
KSR 727 1471 7 2.1% 2.1% 2.1% 96.0%† 22.96 3.31 3108.90 8138.43 0.058 0.12 0.089 0.13 0.029 0.020
PolyFit 69 55 5 0% 88.9% 0.0% 54.0%⋆ 17.31 1.41 6173.04 25941.63 0.29 0.15 0.51 0.16 0.29 0.156
OursP 214 592 1 100% 100% 100% 100% 18.67 2.19 3696.22 2700.15 0.14 0.14 0.24 0.17 0.15 0.11
TetWild 753 1611 5 63.0% 32.0% 32.0% 100% 24.26 2.85 1932.26 7011.41 0.029 0.094 0.062 0.11 0.050 0.083
fTetWild 773 1643 4 73.7% 38.9% 38.9% 95.0%⋆ 24.21 2.77 2195.83 9562.01 0.037 0.13 0.069 0.14 0.059 0.12
ManifoldPlus 747 1610 3 24.0% 66.0% 64.0% 100% 25.14 2.49 559.84 1674.21 0.0060 0.0070 0.042 0.070 0.026 0.020
AlphaWrapping1 804 1631 1 93.0% 100% 100% 100% 23.18 2.28 667.40 369.27 0.018 0.0085 0.059 0.06 0.037 0.024
AlphaWrapping2 743 1510 1 100% 100% 100% 100% 25.06 2.66 327.32 184.00 0.0046 0.0058 0.042 0.068 0.032 0.024
OursQ 760 1631 2 58.0% 100% 100% 100% 22.90 2.23 716.04 413.22 0.020 0.0090 0.060 0.067 0.029 0.020
Ours 760 1631 2 100% 100% 100% 100% 25.21 2.49 310.30 169.58 0.0045 0.0045 0.037 0.067 0.022 0.020

Table 4.3: Statistics of the results generated for the entire dataset by all comparing
low-poly meshing approaches, including the number of vertices (#V), the number of
triangles (#F), the number of components (#C), the ratios between the number of
meshes being self-intersection-free (rf ), manifold (rm), watertight (rw), successfully
generated (rs) and the 100 models in the dataset, and the average (ave) and standard
deviation (sd) of the four visual preservation metrics, i.e., PSNR, LFD, SD, ND,
and HD. We treat a case as a failure if the algorithm terminated with an exception
(marked as ⋆), or reaches the timeout threshold (1h, marked as †).

4.4.2 Comparisons

To demonstrate the effectiveness of our approach, we compare against ten com-

peting methods, including two modules of the state-of-the-art commercial solution—

Simplygon AB (2022), denoted as Simplygon1 and Simplygon2, four academic ap-

proaches, and four baselines by combining mesh repairing and simplification. Since

only Simplygon2 cannot exactly control the element count of the generated mesh,

we compare all methods by matching the element counts of their results to those

generated by Simplygon2 with 200 as its parameter value.

155



Comparison with Commercial Software Simplygon AB (2022) can automati-

cally generate simplified meshes and is popularly used by game studios. We compare

our approach with both its mesh reduction (Simplygon1) and re-meshing (Simplygon2)

modules. As shown in the Simplygon1 and Simplygon2 rows of Table 4.3, Simplygon

can robustly process all meshes in the dataset, while Simplygon2 generates better re-

sults than Simplygon1 from basically all aspects but still introduces self-intersections

and non-manifoldness for some models. In comparison, our approach not only guar-

antees the outputs are topologically clean and free of surface intersections, but also

preserves the visual appearance much better, e.g., with 63.2% and 10.7% higher LFD,

on average over the tested dataset than Simplygon1,2 respectively. Figure 4.11 illus-

trates their visual comparisons on two models.

(a) Input (b) Simplygon1 (c) Simplygon2 (d) Ours

(19383, 0) (1908, 374) (1908, 342) (1908, 122)

(11606, 0) (1046, 1026) (1046, 1288) (1046, 634)

Figure 4.11: Comparison with Simplygon. (•, •) denotes (face number, light field
distance). Notice that, some input meshes may have inconsistent face orientations,
such as the mesh shown in the top row where back faces are rendered in black. From
the zoomed-in regions in the top row, only our method keeps the features of the stairs.
From the bottom zoomed-in row, our approach has the best match of the input.

Comparison with Academic Approaches We compare our algorithm with three

state-of-the-art low-poly mesh generation methods, i.e., PolyFit Nan and Wonka
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(2017), KSR Bauchet and Lafarge (2020) and Gao et al. (2022), and two typically

used mesh simplification approaches, i.e., QEM module in MeshLab Cignoni et al.

(2008) and the Blender decimation modifier. For PolyFit and KSR, we use the uni-

form sampling filter in MeshLab Cignoni et al. (2008) to simple 1M points on the

input mesh. We use the built-in PolyFit API in CGAL with default parameters for

final mesh generation, For the KSR method, in accordance with the authors’ sug-

gestion, we utilize the plane-extraction approach proposed by Yu and Lafarge (2022)

and subsequently employ KSR for surface reconstruction. For all of these, we use the

executable program provided in the authors’ website5 with default parameters. Note

that PolyFit often generates meshes with much fewer triangles than the target value.

In this case, we further simplify our algorithm to match the triangle numbers of their

outputs, which are denoted as OursP . In contrast, KSR generates more triangles than

the target value. In this case, we apply a post QEM step to simplify its output to

the target triangle number. For QEM Cignoni et al. (2008), we first try to match the

target triangle number with the topology preservation option turned on. We then

turn it off if the simplification cannot reduce the element count to the desired value.

As shown in Table 4.3, PolyFit fails to generate results for 46 out of 100 models due

to the failure of planar feature detection, which is a challenge by itself; KSR and

Gao et al. (2022)’s approach fail to provide any results for 4 and 13 out of 100 mod-

els respectively, within the computing time limit of 1h; QEM Cignoni et al. (2008)

and Blender generate considerably worse results in terms of topology and geometry

guarantees. As shown in Table 4.3, our approach not only has geometrical and topo-

logical guarantees, but also achieves the best visual similarity scores, with an LFD

95.0%, 90.0%, 58.6%, 74.5%, and 75.3% smaller than those generated by PolyFit,

KSR, QEM, Blender, and Gao et al. (2022), respectively. This behaves similarly to

the other metrics. We also demonstrate some visual results in Figure 4.12.

5GoCopp and KSR in https://team.inria.fr/titane/software/
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(a) Input (b) Blender (c) QEM (d) Gao et al. (e) KSR (f) PolyFit (g) Ours (h) OursP

(19820, 0) (400, 7238) (346, 796) (348, 606) (346, 292) (20, 7498) (346, 134) (20, 5498)

(20034, 0) (3068, 1336) (493, 1520) (496, 1152) (494, 13072) (0, -) (494, 474) (0, -)

Figure 4.12: Comparison with academia and open-source solutions, where (•, •) de-
notes (face number, light field distance). The inverted faces are rendered as black.
Note that, even after re-orientation using MeshLab Cignoni et al. (2008), inverted
faces appears in the results of PolyFit. Besides, PolyFit also fails in the second ex-
ample.

Comparison with Alternative Pipeline One alternative approach for low-poly

meshing is to first repair the input surface to get a high-quality surface mesh through

the various mesh repair methods Hu et al. (2018, 2020); Huang et al. (2020); Por-

taneri et al. (2022); Diazzi and Attene (2021), then apply a mesh simplification step

(for example QEM Cignoni et al. (2008)) to reduce the element count to a specific

number. We also show the comparison between our approach and four variants of this

two-step process, i.e., TetWild Hu et al. (2018) + QEM, fTetWild Hu et al. (2020) +

QEM, ManifoldPlus Huang et al. (2020) + QEM, AlphaWrapping Diazzi and Attene

(2021) + QEM (AlphaWrapping1). For QEM, we first turn on the topology and nor-

mal preservation options, and set the target face number as the one from Simplygon2.

If the QEM fails to simplify the mesh under these conditions, we turn off topology

and normal options and simplify the mesh again. It is worth noting that removing

the interior of other mesh repairing results did not affect the results since most of

these approaches, such as TetWild Hu et al. (2018), and AlphaWrapping Portaneri

et al. (2022) (AlphaWrapping), have either implicitly or directly removed the interior.

However, ManifoldPlus Huang et al. (2020) produced inconsistent face orientations,

requiring more complex interior removal approaches that we are not aware of. As

demonstrated in Table 4.3 and Figure 4.21, the main drawback of this idea is that,
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although mesh-repairing approaches can fix the mesh to some extent, the follow-

up simplification step will break the desired properties especially when the desired

element count is small. For example, although MainfoldPlus Huang et al. (2020)

and AlphaWrapping Portaneri et al. (2022) generate manifold and watertight mesh,

respectively, the following simplification step breaks these guarantees. Notice that

some mesh repairing methods also introduce issues in the meshes. For example, there

are lots of self-intersections in MainifoldPlus’s output of the first example of Fig-

ure 4.21. AlphaWrapping Portaneri et al. (2022) always generates a self-intersection-

free surface, but it does not capture the sharp features in the input mesh, which

leads to undesired visual appearances after simplification. TetWild Hu et al. (2018)

and fTetWild Hu et al. (2020) can generate meshes with non-manifold configurations,

which could be further repaired to be manifold at the cost of surface intersections

Attene et al. (2009).

Additionally, we experiment with replacing parts of our algorithm with alter-

native methods. For instance, combining our mesh extraction with QEM (OursQ)

leads to significantly inferior results compared to our original approach. Further-

more, when combining our mesh optimization with other mesh repair methods, such

as AlphaWrapping (denoted as AlphaWrapping2), the results exhibit comparable LFD

values but worse HD outcomes.

To sum up, comparing to these baseline variants, our method ensures the

generated mesh is topologically clean, geometrically self-intersection-free, and visually

appearance preserving.

Timings We take about 7 minutes on average to finish the re-meshing of the entire

tested dataset while the others take less than 2 minutes, except for Gao et al. (2022)

(over 10 minutes) and the KSR method (over 15 minutes). In Figure 4.13, we further

analyze the time costs of different stages of our approach: the edge flip step in the iso-

surface extraction step(te); the other iso-surface steps(ti); interior removal step(tr);
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ts: 55.4%
te: 29.2%
ti: 6.7%
tr: 4.7%
to: 4.0%

Figure 4.13: The time statistics for our method. left: the pie chat of time costed the
different stages of our algorithm. All the symbols are defined in Section 4.4.2. right:
the log-log (base e) plot of our time cost T (in seconds) and the face number (#F ) of
extracted iso-surface. We find that the most time consuming parts (over 80%) are the
edge-flip step (te) in iso-surface generation step and the mesh simplification (ts) during
the mesh optimization, where massive self-intersection checks are applied to ensure
the desired intersection-free properties. This explains the strong positive correlation
between the time consumption and the face number in extracted iso-surface. Indeed,
the more faces you have, the more edge flip and collapse operations will be applied.

mesh simplification step(ts); and the others, like flow, alignment, and I/O(to). We

find that the most time-consuming part is the edge-flip (in iso-surface extraction) and

mesh simplification (in mesh optimization) with self-intersection checks involved. It

turns out that these two parts take over 80% of our entire process (See Figure 4.13),

of which self-intersection check takes over 70% of the time. For this reason, the more

faces the extracted iso-surface, the more edge flip and collapse operations will be

conducted, ultimately leading to a higher cost. The right image of Figure 4.13 also

reveals this positive correlation.

4.4.3 Parameters

Screen Size np We conduct a performance analysis in terms of user-specified screen

size np and the corresponding iso-values d (d = l/np as mentioned in Section 3.1).

In Table 4.4, we report the average face number, timing and the visual metrics for
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3 different choices of np. We notice that increasing np improves the visual similarity

between our output and the input high-poly mesh, but at the same time, it will cost

more time and end up with a larger number of faces. Figure 4.14 also provides an

illustration.

np #F
Time(s) PSNR LFD SD ND HD

ave sd ave sd ave sd ave sd ave sd ave sd
50 139 30.40 8.82 20.67 2.26 1298.14 956.31 0.030 0.015 0.093 0.070 0.047 0.027
100 408 99.92 39.13 22.45 2.33 656.88 320.81 0.014 0.0086 0.062 0.067 0.033 0.022
200 1193 440.12 234.35 24.40 2.48 367.14 190.88 0.0065 0.0058 0.042 0.066 0.022 0.020

Table 4.4: The statistics for low-poly meshes generated with different screen sizes
(np). Increasing the screen size results in a better re-meshing result, but leads to a
larger face number and a slower solving speed.

(a) Input (b) np = 50 (c) np = 100 (d) np = 200

(7482, 0, 0) (94, 602, 21.1s) (198, 354, 70.5s) (470, 252, 274.7s)

Figure 4.14: The re-meshed results w.r.t. different user-specified distance tolerance,
where l is the diagonal length of the bounding box of input mesh. (•, •, •) denotes
(face number, light field distance, time cost). The smaller the tolerance is, the better
re-meshed result we will get, but at the same, the computational cost grows.

Voxel Size Given a screen size np, different voxel size will lead to different results.

In Figure 4.15, we compared the extracted iso-surface results using different voxel

sizes for a fixed iso-value d = l/np, where l is the diagonal length of the bounding box
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and np = 200. As we argued in Section 4.3.1, too large voxels may lead to the missing

parts of the extracted iso-surface (second left image), while too small voxels will slow

down the extraction (rightmost image). To achieve a trade-off between efficiency and

performance, we set the diagonal length of voxels to be equal to our offset distance.

(a) Input (b) 4d (c) 2d (d) d (e) d/2

(-, 0) (39, 11.35 s) (8, 40.46 s) (8, 191.85 s) (8, 2125.47 s)

Figure 4.15: The different extracted iso-surface for a fixed offset distance using dif-
ferent voxel sizes. (•, •) denotes (#genus, time cost). The “-” means that the input
mesh is non-manifold. The black bottom in the first figure is due to inversed face
orientation. As observed, a larger voxel size (e.g., 4d) produces a high-genus surface.
Reducing the voxel size captures finer details but increases the computational cost.

Flow Step Fractional Ratio r As we state before, during the geometric flowing

process, we multiply the flow direction by a fraction r to allow more moving space for

the entire mesh and to achieve a better-optimized result. In practice, we find that a

smaller step size will lead to a better visual similarity (a smaller light field distance)

between the output mesh Mo and the input mesh Mi, but at the cost of a larger

number of triangles. From the test shown in Figure 4.16, we empirically choose 1
8
as

the default value to achieve a good balance between a low element count and a high

visual similarity to the input.

Feature Curve Length l0 In Figure 4.17, we show different iso-surface results

based on different choices of feature-line length. Increasing this threshold does grad-

ually solve the “saw-tooth” issue of the initially extracted iso-surface (Figure 4.17b).

At the same time, it will blur some sharp features. In practice, we find l0 = 4 is a
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(a) Input (b) r = 1 (c) r = 1
2 (d) r = 1

4 (e) r = 1
8 (f) r = 1

16 (g) r = 1
32

(14620, 0) (546, 248) (570, 268) (580, 226) (584, 222) (598, 224) (610, 202)

Figure 4.16: The different results using different flow step fractional ratio r. (•, •)
denotes (#faces, LFD). As we can see, decreasing r will lead to a smaller LFD, but
in turns, it will produce an output with larger number of faces.

choice of ideal trade-off. A better understanding of choosing these parameters needs

further exploration, we leave this as future work.

(a) Input (b) l0 = 0 (c) l0 = 2 (d) l0 = 4 (e) l0 = 6 (f) l0 = 8

Figure 4.17: Different feature-line length threshold l0 leads to different results, where
we also show the zoomed-in regions without the wireframes for a better visualization.
The red-framed top and bottom rows are the same models with different rendering.
As we can see, larger threshold does smooth out the geometry (the black regions
disappears), but at the same time, some of sharp features are blurred. l0 = 4 achieves
a trade-off between these considerations, thus we choose this as our default parameter.
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4.5 Additional Applications

4.5.1 Iso-surface Extraction Comparison

The mesh extraction step of our algorithm can be independently useful, where

many competing algorithms have been proposed in the past as shown in Table 4.1.

We show the advantage of our mesh extraction algorithm by comparing our approach

with: 1) MC33 Chernyaev (1995), 2) EMC Kobbelt et al. (2001), 3) DC Ju et al.

(2002), and 4) Manson and Schaefer (2010)’s approach. The first three serve as the

baselines, and the last one meets all the desired properties listed in Table 4.1. In

order to apply these algorithms to any input mesh Mi, we convert the input mesh

Mi to be an implicit function by Equation 4.1, and the corresponding Hermite data

(Section 4.3) for DC. We modified the EMC algorithm provided in Mario Botsch

(2015), adapt the Vega et al. (2019)’s implementation of MC33, use the embedded

DC function in libigl Jacobson et al. (2018), and choose the Manson and Schaefer

(2010)’s own implementation6 to generate the corresponding results. In Figure 4.22,

we show the extracted iso-surface in terms of the different iso-values: l/50, l/100,

l/200 and l/400, where l is the diagonal length of the bounding box of Mi. Among

all of these examples, we use the same grid resolution as ours, except for Manson and

Schaefer (2010)’s approach, where the default octree settings are used. One thing

to point out is that although all approaches generate reasonable results, prior works

suffer from several drawbacks: MC33 can generate a closed and self-intersection-

free manifold surface, but cannot capture the sharp creases especially when the grid

resolution is low (see the zoom-in of Figure 4.22); EMC and DC recover the sharp

features, but they either may lead to self-intersections or have no guarantees of the

manifoldness and self-intersection-free properties (see Section 4.2.2 for more detailed

discussion); Manson and Schaefer (2010)’s approach may generate iso-surface with an

undesired high genus (circled regions in Figure 4.22).

6http://josiahmanson.com/research/iso_simplicial/
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4.5.2 Cage Generation

Our re-meshing scheme can be easily adapted to generate cages for the input

mesh, without any requirements for it to be manifold, watertight, or self-intersection-

free. The cage mesh has to fully enclose but not penetrate a 3D model. We can easily

achieve this by adding a penetration check during our mesh optimization step. More

specifically, every time we update a vertex position in the flow and alignment steps,

we simply modify Algorithm 4 by adding one more intersection check between the

current mesh and the input. We reject any edge collapse that leads to the intersection

with the input. These additional checks can be handled efficiently by classical BVH-

based collision detection Karras (2012). In Figure 4.18, we show the cage generated

by our algorithm. Unlike the automatic caging algorithm Sacht et al. (2015) requiring

the input to be watertight, self-intersection-free, and manifold, our algorithm makes

no assumptions of the input mesh. For example, the input model in Figure 4.18 has

32 non-manifold edges and 264 intersecting triangle pairs.

To compare with Sacht et al. (2015) more thoroughly, we run both approaches

to generate cages for a dataset Gao et al. (2019) containing 93 meshes with clean

topology and geometry that is required by Sacht et al. (2015)’s approach. We use

the author-provided code to generate a cage with their Evarap energy (see Section 3.2

of Sacht et al. (2015) for details). We run both methods by setting the number of

triangles of the final cage to be 2000 and the computing time limit of 1h. As shown

in Table 4.5, Sacht et al. (2015)’s solution returns run time error for 20 models and

fails to produce any results within the time limit for 5 models. At the same time,

our approach successfully generates a tighter cage (smaller Hausdorff distance) for

the entire dataset. Notice that, some cages generated by Sacht et al. (2015) have

really bad artifacts, for example, the “spikes” shown in Figure 4.19. We also reported

the updated statistics after manually removing these models in the last two rows of

Table 4.5.
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Methods rs
HDc→i HDi→c HD

ave sd ave sd ave sd
Ours 100% 0.21 0.58 0.20 0.53 0.22 0.59
Sacht et al. 73.1% 1.11 7.17 38.03 306.89 38.03 306.89
Ours∗ 100% 0.14 0.36 0.13 0.32 0.15 0.37
Sacht et al.∗ 74.7% 0.15 0.33 0.19 0.45 0.19 0.45

Table 4.5: The Hausdorff distance statistics. HDc→i is the Hausdorff distance from
generated cage to the input mesh, HDi→c is the distance from the opposite direction,
and HD = max(HDc→i,HDi→c)). rs is the successful ratio. Sacht et al. (2015) failed
to produce the results for 20 out of 93 models due to the run time error, for 5 out of
93 models since exceeding the time threshold.

(a) Input (b) Generated shell (c) Sliced view

Figure 4.18: The generated shell for a cartoon octopus.

4.6 Conclusion, Limitations, and Future Works

In this chapter, we propose a robust approach to generate low-poly repre-

sentations of any input mesh. Our approach can be decomposed into two inde-

pendently useful stages: 1) the iso-surface extraction stage (re-meshing), where we

extract a water-tight, feature-preserving, and self-intersection-free iso-surface of the

input mesh with any user-specific iso-value; 2) a mesh optimization stage, where we

alternatively re-mesh and flow the extracted the surface to meet the desired prop-

erties: low-resolution and visually close to the input mesh. Although we currently

cannot guarantee the deviation bound, our algorithm effectively adheres to it, with a

Hausdorff distance (HD) of 4.4d for the dataset, where d represents the offset distance.
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(a) Input (b) Ours (c) Sliced view (d) Sacht et al. (e) Sliced view

(0, 0, 0) (0.67, 0.79, 0.79) (0.92, 1.56, 1.56)

(0, 0, 0) (1.01, 1.09, 1.09) (6.34, 23.64, 23.64)

Figure 4.19: Comparison with Sacht et al. (2015). (•, •, •) denotes the Hausdorff
distance from cage to input, from input to cage, and between input and cage, respec-
tively. Even if the input mesh is water-tight, Sacht et al. (2015) may end up with
bad cage shape (bottom row).

Scalability Figure 4.20 illustrates the relationship between screen size and the time

and memory requirements for the tree model shown in Figure 4.2. While our approach

successfully produces results for larger screen sizes, it does not demonstrate optimal

scalability in terms of memory and time efficiency. The primary reason for memory

consumption is the dense grid generation, which accounts for over 70% of memory

usage. We believe that using a sparse grid implementation will alleviate this issue,

and we plan to explore this as a future engineering improvement. Regarding effi-

ciency, as shown in Table 4.4, our approach spends the majority of its time (over

80%) on simplification and edge flip steps during iso-surface extraction. These steps

involve numerous intersection checks, and a parallel implementation could signifi-

cantly accelerate the process. Additionally, our current iso-surface extraction relies

167



on a CPU-based algorithm, and we aim to develop a GPU-based version in future

work.

T(s) #GB

np np

Figure 4.20: Time and memory consumption in terms of screen size for the tree model
in Figure 4.2.

Manifoldness, Self-intersection-freeness, Watertightness Our approach guar-

antees to produces intersection-free, manifold, and watertight outputs. Ensuring

intersection-free and manifold properties facilitates easier UV unwrapping and min-

imizes visible appearance artifacts during texture baking. However, when dealing

with an open input mesh, watertightness might not be essential, where a post mesh

segmentation process could be employed to remove the redundant faces to carve out

the open region.
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(a) Input (b) TetWild (c) After QEM (d) fTetWild (e) After QEM (f) AlphaWarpping
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, ×) (4592, 312, ×, ×) (48890, 280,

√
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)

(26676, 0, ×, ×) (2532, 570,
√
,
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) (132, 2410, ×, ×) (3616, 722,

√
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√
,
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)

(g1) After QEM (g2) After Opt (h) ManifoldPlus (i) After QEM (j) Ours (k)OursQ
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√
,
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) (4592, 176,

√
,
√
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√
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(130, 2162,
√
,
√
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√
,
√
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√
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√
) (130, 600,

√
,
√
) (130, 2458,

√
,
√
)

Figure 4.21: Comparison with variants of the pipeline of first mesh repairing and
then mesh simplification. For (g2), we apply the proposed mesh optimization on
the AlphaWrapping (AW) output; for (k), we combine our mesh extraction with
QEM simplification. All the back faces are rendered black. (•, •, •, •) indicates (face
number, light field distance, self-intersection-free flag, manifoldness flag).
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(e) Manson and Schaefer

Figure 4.22: The comparison of different iso-surface extraction method. (•, •, •, •, •)
are (iso-value, #self-intersected faces, #non-manifold edges, #comps, #genus), where
l is the diagonal length of the bounding box of the input mesh. “-” means the genus
is not well defined given the mesh is not manifold
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Figure 4.23: We show our lookup table. The cube vertices are colored by their signs,
with red for positive and blue for negative. The surface-cube intersections on edges
are the pink points, while the yellow points are the inserted feature points. Notice
that case 12.2 and 12.3 are symmetric, as well as case 11 and 14.
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Figure 4.24: Cube division policies for MC33 cases with more than one components.
The numbers inside the parentheses are the cube vertices which form the constraint
polyhedra (rendered in gray) for the corresponding components (rendered in blue)
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Chapter 5: Conclusion and Future Directions

Simulating and manipulating wrinkles plays a pivotal role in computer graph-

ics, fashion design, and artistic endeavors. Yet, the prevalent tools in this domain

encounter a significant trade-off between detail and computational efficiency. Low-

resolution meshes fall short in capturing intricate details, whereas high-resolution

counterparts, despite their accuracy, compromise on efficiency. This dilemma is fur-

ther exacerbated by the complexities of collision and friction dynamics. The models

and algorithms delineated in this thesis offer innovative solutions to these challenges,

thereby advancing the field of wrinkle simulation.

Chapter 2 introduced the Tension Field + Wrinkles (TFW ) model, a ground-

breaking method for depicting detailed wrinkles on coarse base meshes. This model

leverages spectral representation to capture high-frequency wrinkles, a novel approach

that builds upon the established elastic model (StVK ). Through rigorous experimen-

tation, we validated the TFW model’s accuracy and effectiveness, particularly in the

static simulation of high-frequency wrinkles.

Furthering this innovation, Chapter 3 presented the Complex Wrinkle Field

(CWF ), coupled with state-of-the-art interpolation and upsampling algorithms. This

development facilitates the rapid generation of high-frequency wrinkle animations on

a single CPU and supports the design of wrinkle patterns with specific directions and

amplitudes, underscoring its industrial potential.

In pursuit of a suitable coarse base mesh, Chapter 4 detailed an algorithm capa-

ble of transforming any high-resolution mesh into a coarse, manifold, and intersection-

free version, independent of its original topology and geometry. Demonstrated on a

subset of the Thingi10K models, our method not only achieved a 100% success rate

but also surpassed the performance of commercial (e.g., Simplygon), open-source soft-

ware, and other academic algorithms. This technique proves invaluable not only for
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mesh generation for CWF and TFW models but also holds extensive applicability in

game development, particularly for Level of Detail (LOD) modeling.

The contributions of this thesis signify a novel approach to representing and

understanding high-frequency wrinkles, thereby enabling a reduction in the degrees

of freedom. Additionally, our remeshing and repair algorithm facilitates the handling

of real-world data. Nevertheless, these advancements merely scratch the surface of

what’s possible in real-time simulation of real-world data. Two primary concerns

warrant further investigation: the robustness of simulating poorly meshed thin shells

and the efficiency of dynamic simulations.

Addressing robustness, traditional remeshing techniques, while effective, often

introduce extra collisions and inadvertently alter the geometry. A promising solution

lies in the adoption of intrinsic triangulation, specifically intrinsic Delaunay retrian-

gulation. This approach preserves the underlying geometry while enhancing mesh

quality, thereby offering a potential solution to classical remeshing challenges. Ex-

ploring simulation models that operate on this representation could revolutionize the

handling of geometric data.

Efficiency remains another critical area for exploration. While the proposed

StVK and CWF models adeptly address keyframe interpolation for animation, the

dynamic aspects of CWF require further development. Pursuing research in GPU

acceleration could open new avenues for efficient simulation. Additionally, exploring

generative models for simulating wrinkles might offer novel insights and methodolo-

gies for future research. For example, rather than solely generating mesh models,

an intriguing approach would be to incorporate physical properties throughout the

process. This could involve creating models with varied stiffness or incorporating equi-

librium as one of the training objectives to ensure the generated models are physically

stable.

In summary, this thesis lays the groundwork for future studies in wrinkle

simulation, addressing both the technical and conceptual challenges within the field.
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The journey towards real-time, real-world data simulation is fraught with challenges,

yet the potential rewards for computer graphics, fashion design, and beyond are

immense.
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Appendix A: Fine Wrinkling on Coarsely Meshed

Thin Shells Appendices

A.1 Kirchhoff-Love Shells

s(u, v, t) = r(u, v) + tn̂(u, v)

where n̂ = ru×rv
∥ru×rv∥ is the unit normal of the midsurface. This map induces a (volu-

metric) metric g on the slab U × [−h
2
, h
2
]:

g =

[
I − 2tII +O(t2) 0

0 1

]
, (A.1)

where

I = drTdr, II = −drTdn̂

are the first and second fundamental forms of the midsurface.

If the residual strains in the shell are linear in the thickness direction, the shell’s

rest state can be recorded in terms of a “rest metric” with similar expression van Rees

et al. (2017); Chen et al. (2018a):

g =

[
Iu − 2tIIu 0

0 1

]
. (A.2)

Notice that if we take the rest state as the parameter domain, which is almost always

the case for sewn garments, then Iu = id and IIu = 0.

For a St. Venant-Kirchhoff material, and assuming in-plane strain is O(h), the

elastic energy in Equation (2.1) can be derived from the above setup, by integrating

through the midsurface direction, and dropping energy terms of order higher than

cubic Weischedel (2012).

As mentioned in the main text, the matrix norm in the Koiter energy describes

the elastic constitutive law,

∥M∥2SV =
α

2
tr2(M) + β tr(M2),
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where the Lamé parameters are related to the Young’s modulus Y and Poisson’s ratio

ν by

α =
Y ν

1− ν2
, β =

Y

2(1 + ν)
. (A.3)

We discretize the first fundamental form as piecewise constant, derived directly

from the definition I = drTdr and the fact that r is linear within each triangle face

fijk:

I =

[
∥vj − vi∥2 (vj − vi) · (vk − vi)

(vk − vi) · (vj − vi) ∥vk − vi∥2
]
,

Here the first fundamental form is expressed in the triangle’s own barycentric coor-

dinates.

For the second fundamental form, we follow the discretization of Grinspun

et al. (2003) and others Weischedel (2012); Chen et al. (2018a) based on jumps in the

mid-edge normal:

IIb = 2

[
(vj − vi) · (n̂j − n̂i) (vk − vi) · (n̂j − n̂i)
(vk − vi) · (n̂j − n̂i) (vk − vi) · (n̂k − n̂i)

]
,

where n̂i is the mid-edge normal on the edge ejk opposite to vi on face fijk. We take

this mid-edge normal to be

• the unit face normal if ejk is a boundary edge;

• the average of the face normals on the two adjacent faces of ejk, otherwise.

A.2 Tension Field Theory

Given a parameter domain U ⊂ R2 with material metric Iu as described in

Appendix A.1, the stretching energy density Ws in Equation (2.2) can be written as:

Ws(λ1, λ2) = ∥I−1
u I − id∥2SV

=
α

2
(λ1 + λ2)

2 + β(λ21 + λ22)
. (A.4)

Here λ1,2 are the eigenvalues of the Green strain I−1
u I−id. Without loss of generality,

we assume λ1 ≥ λ2.
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In tension field theory, this stretching energy density is modified to be identical

to Ws in regions of pure tension, but so that the material exerts no force resisting

compressive stress. In terms of the principal strains, this behavior is captured by the

formula

W̃s(λ1, λ2) =


0, λ1 < 0, λ2 < 0

Ws

(
λ1, λ̂2(λ1)

)
, λ1 ≥ 0, λ2 < λ̂2(λ1)

Ws(λ1, λ2), λ1 ≥ 0, λ2 ≥ λ̂2(λ1),

where

λ̂2(λ1) = argmin
λ2

Ws(λ1, λ2).

See Montes et al. (2020) for the full derivation of these expressions.

A.3 In-plane Wrinkle Correction Calculation

In this section, we use the notation and definitions of Section 2.3.4 for w,w⊥

and dϕ⊥, and derive the expressions for v1 and v2 cited in Chapter 2.

First, notice that we can zero out the term (2.15) by simply setting

v2 =
a2

8
I−1
b dϕT .

The v1 term is more involved. Writing X = −2aIIb and y = Ibv1, and using the

notation [M ]T =M +MT , minimizing the term (2.14) amounts to solving:

min
v1∈R2

∥∥I−1
u

(
X +

[
ydϕT

]
T

)∥∥2
SV

(A.5)

One can check that, for any symmetric matrix M ,

∥I−1
u M∥2SV =

α

2

(
∥ŵ∥2M +

∥∥ŵ⊥∥∥2
M

)
+ β

(
∥ŵ∥2M + 2

(
ŵTMŵ⊥)2 + ∥∥ŵ⊥∥∥2

M

) (A.6)

using the fact

tr(I−1
u M) = ŵTMŵ +

(
ŵ⊥)T Mŵ⊥
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where ŵ and ŵ⊥ are the normalized w and w⊥ under Iu norm. By setting (recall:

w = I−1
u dϕT )

ỹ = ∥w∥Iu y, M = X + [ṽŵTIu]T

and representing ỹ in the basis {Iuŵ, Iuŵ⊥},

ỹ = x̃1Iuŵ + x̃2Iuŵ
⊥,

Equation (A.5) can be converted into a quadratic problem

min
x̃1,x̃2

α

2
(c1 + 2x̃1 + c2)

2 + β
(
(c1 + 2x̃1)

2 + c22 + 2(c3 + x̃2)
2
)

where c1 = ŵTXŵ, c2 =
(
ŵ⊥)T Xŵ⊥ and c3 = ŵTXŵ⊥. The optimal solution is

given by

x̃∗1 = −
1

2

(
c1 +

α

α + 2β
c2

)
= −1

2

wTXw

wTIuw
− α

2α + 4β

(
w⊥)T Xw⊥

(w⊥)T Iuw⊥

x̃∗2 = −c3 = −
wTXw⊥

∥w∥Iu ∥w⊥∥Iu

y∗ = −

(
α

2α + 4β

tr(I−1
u X)

∥w∥2Iu
+

β

α + 2β

wTXw

∥w∥4Iu

)
dϕT

− wTXw⊥

∥w∥2Iu ∥w⊥∥2Iu

(
dϕ⊥)T

and the optimal value attained is

β(α + β)

(α/2 + β)
c22 =

β(α + β)

(α/2 + β)

[(
w⊥)T Xw⊥

]2
∥w⊥∥I4

u

.

Unwinding the changes of variables leads to the formula for v1 in Section 2.3.4.

A.4 Derivation of Stretching Term in TFW Model

In Equation (2.19), we have

r ≈ rb + drbI
−1
b

(
a sinϕv +

a2

8
sin 2ϕ dϕT

)
+ a cosϕn̂b.
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Applying the assumptions about fast and slow variables stated in Section 2.3.3, we

can compute dr in the following way:

dr =drb

(
id− a cosϕI−1

b IIb + sinϕ
(
I−1
b v

)
da+ a cosϕ

(
I−1
b v

)
dϕ

+
a

4
sin 2ϕ

(
I−1
b dϕT

)
da+

a2

4
cos 2ϕ

(
I−1
b dϕT

)
dϕ

)

+ n̂b

(
cosϕda− a sinϕdϕ+ a sinϕ

(
I−1
b v

)T
IIb

+
a2

8
sin 2ϕ

(
dϕI−1

b

)
IIb

)
=drb(id+ A) + n̂bB,

where the matrix A and vector B collect the various terms in the above expression.

We then compute

(id+ A)TIb(id+ A) =Ib + [IbA]T + o(A)

≈ Ib − 2a cosϕIIb + sinϕ[vda] + a cosϕ[vdϕ]T

+
a

4
sin 2ϕ[dϕTda]T +

a2

2
cos 2ϕdϕTdϕ

= Ib +
a

4
sin 2ϕ[dϕTda]T +

a2

2
cos 2ϕdϕTdϕ

− 2a cosϕIIb + a cosϕ[vdϕ]T + o(∥da∥)

and

BTB =cos2 ϕdaTda+ a2 sin2 ϕdϕTdϕ− a sinϕ cosϕ[dϕTda]

+ o
(
a2∥dϕ∥2

)
+ o (a∥v∥) + o

(
a∥dϕTda∥

)
≈ cos2 ϕdaTda+ a2 sin2 ϕdϕTdϕ− a sinϕ cosϕ[dϕTda].

To avoid (even more) clutter, implicit in the above expressions is the use of one-form

and vector norms I−1
u and Iu, respectively, and the matrix norm ∥ · ∥SV.
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Then, after dropping the high order terms, we get

Ws =I−1
u (drdr − Iu)

=I−1
u (Ib − Iu +

1

2
daTda+

1

2
a2dϕTdϕ)

+ cosϕ
(
I−1
u (−2aIIb + a[vdϕ]T )

)
+ sin 2ϕ

(
I−1
u (−a

4
[dϕTda]T )

)
+ cos 2ϕ

(
1

2
I−1
u daTda

)
.

From here we recover the expression for the wrinkle field stretching energy

in Section 2.3.5 by plugging in the definition of v, and applying the coarse-graining

operator.

A.5 Additional Performance Experiments and Data

In this Appendix, we provide more detailed data and discussion related to the

performance experiments reported in Section 2.6.5.

A.5.1 Per-Iteration Timing Breakdown

We instrumented the wall-clock time required by each component of one opti-

mization step of StVK and TFW, and report these timings (averaged over experiments

and iterations) in Figure A.1. For both methods, the base solver (QP for TFW and

linear for StVK ) takes the majority of time (≈ 70% for StVK and ≈ 55% for TFW).

We made a best effort to optimize both the StVK and TFW code, and that the QP

solver time dominates in both methods in Figure A.1 confirms that there are no gross

inefficiencies remaining in either implementation.

For StVK, we used parallel supernodal sparse Cholesky decomposition, pro-

vided by SuiteSparse Chen et al. (2008), as the solver, and the computational ex-

pense of the solve is due to the large size of the hessian matrix. For TFW, we use

NASOQ Cheshmi et al. (2020) as our QP solver, and the bulk of the expense is

due to the presence of the integrability equality constraints on ω and the inequality
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constraints on a. NASOQ is not optimized for our (very simple) box inequality con-

straints; in Table A.1, we list the average time per iteration spend by NASOQ, and

compare to a baseline where we drop the constraints and use CHOLMOD to solve

the TFW QP instead. The latter numbers are substantially faster than the former

and give a sense of the performance ceiling for TFW, should NASOQ be replaced by

a more performant QP solver.

Source code for our implementations of both TFW and StVK are available in

this Github page.

gradient calc.: 0.5%
hessian calc.: 25.7%
CHOLMOD solver: 70.8%
line search: 2.2%
miscellaneous: 0.8%

gradient calc.: 3.9%
hessian calc.: 20.4%
NASOQ solver: 54.8%
line search: 11.9%
miscellaneous: 9.1%

(a) StVK (b) TFW

Figure A.1: Breakdown of average time required by each component of TFW and
StVK during one optimization iteration (averaged over all iterations of all collision-
free examples in Chapter 2). See Tables A.1 and A.3 for additional timing breakdowns
for TFW and StVK, respectively. “Miscellaneous” includes bookkeeping such as up-
dating the state variables, printing information about the solver state to the console,
checking for termination, etc.

A.5.2 Residual Plots for Each Example

For each of our examples, we provide plots in Figure A.2 of the gradient

residual (for StVK ) and of the stationarity residual, i.e gradient projected onto the

constraint manifold using the current values of the Lagrange multipliers, for TFW.

Both are plotted against wall clock time. We also show stills of each simulation at the

chosen visually-stable time, as well as many iterations later, to illustrate that there

is indeed no significant visual difference between the results at these two times.
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TFW StVK

(a) Stationarity residual (b) Visually stable (c) Final (a) Gradient norm (b) Visually stable (c) Final

Figure A.2: Comparing residual and wall clock time for our examples: For StVK, it’s
the gradient norm; for TFW, it includes projection onto Equation A.9’s constraints
with |∇L| = |∇Ewf + STy + CT z|, where y, z are Lagrange multipliers. Dashed
lines mark when simulations appear visually stable upon inspection, using the infin-
ity norm. The second and third columns display wrinkled surface snapshots at the
visually stable point and post-experiment, respectively. Simulations end after 1000
iterations or when the residual norm is below 10−6. Refer to Table 2.1 for detailed
experiment data.
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For TFW, we see that the point at which a simulation becomes visually stable

(chosen by inspection of the simulation output) approximately matches the onset

of a plateau in the residual plot. The situation for StVK is less clear. In future

work, it would be practically useful to formalize these observations into a quantitative

termination condition corresponding to being “visually stable.”

A.5.3 Convergence Discussion

In Tables A.1 and A.2, we provide additional timing data about termination of

the simulations shown in Figure 2.22: recall that termination occurs on each timeline

where the background color changes from blue to green, and that we terminate when

either the residual infinity norm is smaller than 10−6 or the optimization exceeds 1000

iterations. Note that the gradient of energy with respect to position has different

units than the gradient with respect to amplitude a or to frequency ω; it is thus only

meaningful to compare TFW results to each other and StVK results to each other,

since each method is essentially using a different termination condition.

In Figure A.2, we observe that the gradient norm eventually converges quadrat-

ically to zero, as expected. On the other hand, for some examples the TFW stationar-

ity residual appears to converge only linearly. We believe the reason for this behavior

is the non-negativity constraint on a: near optimality, the optimization problem

in Equation (A.9) becomes convex, but only in the feasible cone delineated by the

equality constraints and active inequality constraints. In particular, near optimality

the unconstrained Hessian can be indefinite, even though the second-order change in

energy is positive in every feasible direction. Unfortunately, standard QP solvers, in-

cluding the ones we currently use (NASOQ) generally only accepts positive quadratic

forms, requiring us to project any indefinite Hessian to a nearby positive-definite ma-

trix (see Appendix A.6 for details). The use of this modified Hessian during SQP

prevents quadratic convergence; in future work, NASOQ could potentially be re-

placed by a QP solver that does not require modifying the Hessian in cases where it

is indefinite despite the constrained problem being locally convex.
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Models #verts
TFT TFW Time/iter (s)

#iter time (s) #iter time (s) total NASOQ CHOLMOD
sphere drape 1.6k — — 46 15.06 0.33 0.18 0.013
symmetric dress 1.4k — — 72 29.74 0.41 0.28 0.011
asymmetric dress 3.4k — — 50 38.47 0.77 0.56 0.030
pants 4k — — 74 141.74 1.92 1.52 0.029
stretched sheet 522 10 0.45 23 3.93 0.17 0.10 0.0039
sheared rectangle 1k 21 2.27 147 27.52 0.19 0.073 0.0082
torus 2k 11 2.27 125 74.82 0.60 0.44 0.017
balloon 5k 33 16.04 91 125.33 1.38 1.08 0.039
teabag 936 8 0.78 46 7.32 0.16 0.057 0.0034
teddy∗ 2k 3 0.93 1001 322.25 0.32 0.19 0.0063
twisted cylinder 688 12 0.69 813 104.92 0.13 0.048 0.0056

Table A.1: Additional timing information for the TFW solver. The TFT columns
list the number of iterations and wall clock time spent computing the base mesh
(Section 2.4.1), and the TFW columns give the same information, for the solve for
the wrinkle field variables (Sections 2.4.2 and 2.5.2). Note that the TFW times are
for when we terminate the TFW simulation due to small stationarity residual, or
maximum iterations, and do not correspond to termination at the visually-stable
time (see Section A.5.3 for more discussion). Note that the time needed to compute
the base mesh is negligible compared to the SQP solve for amplitude and frequency.
The last three columns, from left to right, list: the average wall clock time required
by one TFW iteration, the amount of that time spent specifically inside NASOQ (see
also Figure A.1), and the amount of time CHOLMOD would require for the same
solve if the constraints were ignored. This latter number serves as a ceiling for how
efficient TFW might be, if the NASOQ solver were replaced by another, more efficient
code.

A.5.4 Initialization of StVK

Like in all statics problems, our StVK optimization requires, and has perfor-

mance sensitive to, an initial guess. In the main text, we propose using the TFT

base mesh as the initial guess for StVK, both to maximize StVK ’s performance, and

for maintaining consistency of the experimental setup with TFW. We performed ex-

periments to justify this choice, with results listed in Table A.3. Instead of the TFT

base mesh, in these experiments we used a problem-specific “flat” state as the initial

guess: for the stretched sheet, sheared rectangle, torus, and balloon problems, we sim-

ply take the 2D rest mesh as the flat state. For the teabag we export an unwrinkled,
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Models #verts
TFT StVK Time/iter (s)

#iter time (s) #iter time (s) total CHOLMOD
stretched sheet 260k 17 640.39 22 1178.55 53.57 42.63
sheared rectangle 20k 49 101.77 307 936.55 3.05 2.16
torus 40k 13 84.47 46 337.91 3.25 2.02
balloon 40k 291 1907.74 67 547.68 8.00 5.63
teabag 30k 11 34.11 98 521.08 5.32 3.59
teddy 98k 10 214.48 59 1188.25 20.14 14.44
twisted cylinder 960k 33 308.03 424 6071.73 14.32 9.80

Table A.2: Additional timing information for the StVK solver. The TFT columns
list the number of iterations and wall clock time spent computing the base mesh
(Section 2.4.1), and the StVK columns give the same information, for the solve for
the static shape using TFT as the initial guess. Note that the StVK times are for
when we terminate the StVK simulation due to small gradient residual, or maximum
iterations, and do not correspond to termination at the visually-stable time (see
Section A.5.3 for more discussion). The last two columns list the average wall clock
time required by one StVK iteration, and the amount of that time spent specifically
inside CHOLMOD (see also Figure A.1).

pre-optimization initial guess from Marvelous Designer, and for the teddy, we start

from the unwrinkled geometry provided by Skouras et al. (2014). For the twisted

cylinder problem, we use an untwisted cylinder as the flat state. Unsurprisingly, the

TFT solution is universally a better initial guess than these alternate flat states,

since the TFT solution is expected to match the StVK optimum, up to missing fine

wrinkles.

A.5.5 Video Comparisons

We provide videos of the equal-effort comparison experiments illustrated in

Figure 2.22 (See this for details). We play back the optimization iterates for both

TFW and StVK, where playback time is a multiple of wall clock time, chosen so that

each clip plays at reasonable speed. For TFW, we visualize amplitude a as a scalar

color field on the base mesh (white is zero amplitude), and likewise draw I−1
u ωT

as a vector field on rb (left animation). We show the wrinkled surface rw as well

(middle animation; note that since we only recover phase ϕ up to an unknown global
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Models #verts
StVK Time/iter (s)

#iter time (s) total CHOLMOD
stretched sheet 260k 105 6564.25 62.52 47.47
sheared rectangle 20k – – – –
torus 40k 66 448.68 6.80 4.42
balloon 40k 204 1651.71 8.10 5.40
teabag 30k 229 1347.81 5.89 4.21
teddy 98k 140 2259.93 16.14 10.30
twisted cylinder 960k 596 10183.8 17.09 12.86

Table A.3: Timing for an alternative StVK setup where a problem-specific “flat”
state is used as the initial guess rather than the TFT base mesh (see Section A.5.4).
As in Table A.2, the StVK columns give the number of iterations, and wall clock
time, when we terminate the simulation due to small gradient residual or maximum
iterations. The last two columns list the average wall clock time required by one
StVK iteration, and the amount of that time spent specifically inside CHOLMOD.
The shared rectangle experiment failed completely (the simulation exploded after a
few iterations, due to the excessive strain in the initial guess). Notice that the TFT
initial guess leads to faster static solvers in all cases.

phase shift, which is not necessarily temporally coherent between solver iterations,

the wrinkles on the surface can “drift” incoherently between iterations; see Section 2.7

for more discussion of the phase ambiguity). For StVK, we show the predicted vertex

positions at each iteration (right animation).

We use the same background color as in Figure 2.22 to indicate the status of

TFW and StVK at the each frame of the animations. We also show, at the bottom of

the video, a wall-clock time axis for each animation, on which we mark the transition

times where each simulation becomes visually stable or terminates. In most cases,

termination of the TFW algorithm occurs well after TFW has reached a visually

stable state, and well before StVK does so. We speed up the second portion of

the animation (where TFW has terminated and StVK is still running) to keep the

movie length reasonable—precise playback speed information is provided above the

time axis. Each clip ends when the StVK simulation terminates, and we pause each

animation for five seconds at the end.
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Some notable behavior that we observe in the videos: for the TFW stretched

sheet experiment, amplitude first vanishes globally over the sheet, and then wrinkles

emerge at the center of the sheet, as predicted by theory. Notice also that in some

examples (such as the Mylar balloon and torus), the vector field I−1
u ωT has large

magnitude near singularities. This behavior is expected (and corresponds to high-

frequency, low amplitude wrinkling at points where wrinkles converge to a singular

points).

A.6 Additional Implementation Details

In this appendix, we flesh out some of the steps described at a high level in

Section 2.5 of Chapter 2.

A.6.1 Triangulation

We Delaunay-triangulate the parameter domain U to create a simulation mesh.

In many of our examples, the parameter domain is given as a set of disconnected

patches, which are to be sewn together into a garment or balloon along shared bound-

aries; we do so to generate a single connected simulation mesh K.

In Section 2.6.3, we analyze the effect of meshing on the TFW results. We

observe that although our method is fairly robust to mesh resolution and tessellation,

using a highly symmetric mesh, or one whose edge directions have consistent bias,

can result in artifacts, both during simulation of TFT and during Loop subdivision.

We therefore recommend always using an irregular but coarse Delaunay mesh.

A.6.2 Initialization

In this step, we choose initial guesses for a and ω, based on the strain of the

base mesh embedding Vb. We assume each triangle f in F has constant strain (see

Appendix A.1 for details on how we discretize strain and related quantities), and

compute the direction w and magnitude ϵw of the most negative principal strain. We
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initialize amplitude to k
√
2ϵw, where k is an arbitrary constant (in our experiments,

this constant is set to min [0.01, 0.1 · bbox(Vb)], where bbox(Vb) is the diameter of the

bounding box around the base mesh), and compute a target frequency ωe for each

edge e of f using Equation (2.8). (If the triangle has no negative principal strain, we

use a = 0 and ωe = 0 instead.)

Note that this procedure does not generally yield an integrable one-form ω (in

fact, the two triangles neighboring e usually will not even agree on ωe). We project

to the closest curl-free one-form ω in the least-squares sense using the Helmholtz

decomposition.

A.6.3 Amplitude and Phase Optimization Details

Recall from Section 2.5 that we discretize the parameter domain U by a coarse

mesh K = (Vu, F, E), and discretize a as a piecewise-linear function on K and ϕ as a

one-form on the edges E. We can then write the objective function in Equation (2.30)

as a sum of contributions from triangles not in W :

Ewf =
1

2

∑
f∈F,f ̸∈W

∫
f

(
h

4
Wwf

s +
h3

12
Wwf

b

)√
det Iu dA, (A.7)

where Wwf
s and Wwf

b collect the terms in Equations (2.20) and (2.26). da is constant

over each triangle, as are the fundamental forms Iu, IIu. The other terms we need in

order to implement Equation (A.7) are κ⊥ and dϕ.

To estimate curvature of the wrinkle crests, we first compute a vector w per

triangle, as described in Section 2.4.2, based on that triangle’s (constant) base mesh

strain tensor. We then robustly estimate principal curvatures and curvature directions

via quadratic fitting Panozzo et al. (2010), which allows us to compute κ⊥. Note that

κ⊥ is a constant: it does not vary over the course of optimizing Ewf.

Integrability induces one linear equality constraint for each triangle not in W ,

enforcing that the circulation dω of ω around the face is zero:

ωij + ωjk + ωki = 0 (A.8)
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for each face fijk ̸∈ W with edges {eij, ejk, eki}.

On faces not in W , integrability allows us to recover a constant dϕ on that

face from the values of ω on the face’s edges, from the defining equations

dϕ (vj − vi) = ωij, dϕ (vk − vj) = ωjk, dϕ (vi − vk) = ωki.

The integrability constraint on ω is exactly the condition that enforces that this

overconstrained system of equations has a solution (in practice we compute dϕ using

only the first two equations, and discarding the third as redundant).

Forming a global vector x ∈ R|Vb|+|E| by concatenating the unknowns a and

ω, applying the above discretization and three-point quadrature Zhang et al. (2009)

to compute the integrals in Equation (A.7) yields a degree-eight polynomial function

E(x) discretizing Ewf. We minimize this polynomial subject to the simple non-

negativity constraints on amplitudes and the curl constraint, Cx = 0, on non-W

faces,

min
x
E(x) s.t. Sx ≥ 0, Cx = 0 (A.9)

where S is the selector matrix extracting amplitudes from x. We solve this system via

sequential quadratic programming. At each iteration, we use the NASOQ QP solver

Cheshmi et al. (2020) to compute a descent directions δx, by solving the sparse,

linearly constrained quadratic minimization problem

min
δx

1

2
δxTHδx s.t. S [xk + δx] ≥ 0, Cδx = 0

where xk is the current iterate of x and H is a convexification of the energy Hessian

HE(xk) (see below). We perform a line search Moré and Thuente (1994) in the δx

direction to ensure each SQP iteration decreases the energy and does not violate the

inequality constraints. We terminate this optimization process when one of following

termination criteria are satisfied: (1) change in energy is smaller than 10−10, (2) the

stationarity residual of (A.9) is smaller than 10−6, (3) the update to x is smaller than

10−10, (4) reach the maximum iteration steps (1000 by default). We observe that,
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as expected, maximum (unit-length) step sizes are accepted near optimality and so

always generate a feasible solution satisfying the constraints.

Hessian Projection The quadratic form H must be positive-definite in order for

the above SQP scheme to succeed, since otherwise the search direction δx cannot be

guaranteed to be a descent direction. We therefore select H using one of two methods

that ensure it is positive-definite:

• computing the Hessian of each triangle’s contribution to the sum in Equa-

tion (A.7), projecting that local Hessian to the closest positive-definite matrix

(using SVD), and then summing those projected local Hessians to yield H;

• setting H = HE(xk)+ ϵid, where ϵ is a constant larger than the most-negative

eigenvalue in HE(xk), found via binary search.

We leave further research into methods for projecting the energy Hessian, or for

combining the existing approaches into a high-performance metastrategy, to future

work; for the results shown in Chapter 2 we use the first method at the beginning of

the optimization, and switch to the second once the energy decrease per step becomes

smaller than 10−8. See Section A.5.3 for convergence plots of the SQP and additional

discussion.

A.6.4 Phase Field Extraction

To visualize the wrinkled surface, we need to convert ω back into a phase

field ϕ. Although the curl constraints ensure that ω is locally integrable, there is no

guarantee that a ϕ globally exists with dϕ = ω. In the sphere drape example, for

instance, it is possible that the optimal ω encodes a fractional number of wrinkles

around the cloth circumference.

We borrow from the parameterization literature Bommes et al. (2009) the idea

of rounding ω to the nearest ϕ: we take K, remove the wrinkle-free faces F , and cut
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the result into a topological disk. We use Gurobi LLC (2020) to solve

min
ϕ
∥dϕ− ω∥2

subject to the constraint that the jump at each cut edge is an integer multiple of 2π.

The resulting ϕ is defined on a triangle soup made from F ; i.e. two neighboring

faces on K that were cut along their common edge might disagree on the value of ϕ

at their shared vertices. But since this disagreement is always a multiple of 2π, the

cuts are invisible during visualization.

A.6.5 Upsampling and Visualization

The output of the above TFW pipeline is the very coarse base mesh, and the

wrinkle field (a, ϕ) defined on its vertices. To visualize the final wrinkled shell, the

mesh and wrinkle fields must be upsampled (note that directly displacing the vertices

ofK according to the wrinkle field is not useful, as a single triangle often hosts multiple

wavelengths of wrinkles). We explicitly materialize an upsampled mesh by applying

Loop subdivision on K (although, in principle, the visualization could alternately be

done on the fly with a tessellation shader) and also applying the subdivision stencil

to a and ϕ. Some care is needed when subdividing ϕ to correctly account for: (1)

the integer period jumps that can occur in ϕ across neighboring triangles, and (2)

triangles W where ϕ is missing.

We then displace the vertices of the upsampled base mesh using Equation (2.19).

Whereas the v1 term in this equation is crucial to the correct physical modeling of

the elastic energy landscape, we find that this term has only a very slight effect on the

visual appearance of the wrinkled surface during the upsampling. We thus drop the

the v1 term from just this final visualization (but not from prior computation of the

TFW model) when upsampling and visualizing all examples shown in Chapter 2. The

v1 term is nontrivial to estimate on the upsampled base mesh, and subject to noise in

regions where dϕ is small. By contrast, the v2 term is included in this visualization
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step as it is critical throughout. If we were to omit the v2 in-plane term we would

obtain unnatural-looking undulations (see Figure 2.19, right, for an example) rather

than the natural-looking, ”bulging” wrinkles with clear overhangs between wrinkles

seen in Figure 2.19, left.
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Appendix B: Complex Wrinkle Field Evolution

Appendices

B.1 Geodesic Discussion

In this section, we derive the geodesic formula given in the main text.

B.1.1 Distance Energy Derivation

We start with the full derivation of the distance-measure energy term. To

study the wrinkle evolution controlled by CWF , we assume that the underlying base

surface and the corresponding rest shape do not change over time. Therefore

ϵ̇ = −d(ℜ(z))
dt

F −ℜ(z)dF
dt
, (B.1)

F := I−1(d arg z)T (d arg z). (B.2)

Letting ω = darg z and z = az̃ = a(cos θ + i sin θ), we have

∥ϵ̇∥2SV =
(
(ȧ)2 cos2 θ + (aθ̇)2 sin2 θ − aȧθ̇ sin 2θ

)
∥F∥2SV

+ a2 cos2 θ∥Ḟ∥2SV + 2a cos θ(ȧ cos θ − aθ̇ sin θ)(F : Ḟ ),
(B.3)

where

∥M∥2SV =
α

2
Tr2(M) + βTr(M2), (B.4)

with α and β the Lamé parameters, and

A : B :=
α

2
Tr(A)Tr(B) + βTr(AB) = B : A. (B.5)

Following the coarse-graining idea of Aharoni et al. (2017), the trigonometric terms

can be eliminated by averaging with the conjugate correspondence:∥∥ϵ̇∥∥2
SV

=
(
(ȧ)2 sin2 θ + (aθ̇)2 cos2 θ + aȧθ̇ sin 2θ

)
∥F∥2SV

+ a2 sin2 θ∥Ḟ∥2SV + 2a sin θ(ȧ sin θ + aθ̇ cos θ)(F : Ḟ ).
(B.6)
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Therefore,∫
M

∥ϵ̇∥2SV dA ≈
∫
M

1

2

(
∥ϵ̇∥2SV +

∥∥ϵ̇∥∥2
SV

)
dA

=

∫
M

(ȧ)2 + a2
∣∣ ˙̃z∣∣2

2
∥F∥2SV +

a2

2
∥Ḟ∥2SV + aȧ(F : Ḟ ) dA

=
1

2

∫
M

∣∣ ˙̃z∣∣2 ∥Fa,ω∥2SV + ∥Ḟa,ω∥2SV dA,

(B.7)

where we use ∣∣ ˙̃z∣∣2 = ∣∣∣(exp iθ) θ̇∣∣∣ = |θ̇| (B.8)

Fa,ω = aI−1ωTω. (B.9)

Thus the distance on paths γ(t), which connects two endpoints z0 and z1 is given by:

d(γ) =
1

2

∫ 1

0

∫
M

∣∣ ˙̃z∣∣2 ∥Fa,ω∥2SV + ∥Ḟa,ω∥2SV dA dt, (B.10)

with z = az̃ and d arg z = ω, or equivalently (d− iω)z̃ = 0..

B.1.2 Geodesics Computation

The geodesic γ∗ between two endpoints z0 and z1 can be found by solving the

following variational problem:

min
z

1

2

∫ 1

0

∫
M

∣∣ ˙̃z∣∣2 ∥Fa,ω∥2SV + ∥Ḟa,ω∥2SV dA dt

s.t. (d− iω)z̃ = 0, z = az̃, |z̃| = 1

z(0) = z0, z(1) = z1.

(B.11)

To solve Equation (B.11), we write u =
√
aω, and f = ∥u∥2I−1 , so that we have

∥Fa,ω∥2SV = (
α

2
+ β)f 2

∥Ḟa,ω∥2SV = 2(α+ β)
(
uI−1u̇T

)2
+ 2βf∥u̇∥2I−1 .

(B.12)
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ϕ

n̂

r̂x

r̂y
v

Consider the tangent vector v corresponding to the one-form u,

where v = drI−1uT .This can be expressed as the rotation of the

unit basis tangent vector r̂x w.r.t unit base surface normal n̂,

with rotation angle ϕ(t), and rescaling by its norm:

v = ∥v∥R(n̂, ϕ(t))r̂x =
√
fR(n̂, ϕ(t))r̂x, (B.13)

where ∥v∥2 = vTv = uI−1uT = ∥u∥2I−1 = f and R(n̂, ϕ(t)) is the rotation matrix

with axis n̂ and angle ϕ. This expression gives us

uI−1u̇T =
1

2
ḟ

∥u̇∥2I−1 =
1

4f
ḟ 2 + fϕ̇2r̂Tx

(
∂R

∂ϕ

)T
∂R

∂ϕ
r̂x.

(B.14)

Given that ∥n̂∥ = ∥r̂x∥ = 1, n̂ · r̂x = 0, and n̂ is the rotation axis, it is easy to check

that

r̂Tx

(
∂R

∂ϕ

)T
∂R

∂ϕ
r̂x = 1. (B.15)

Therefore we have

∥Ḟa,ω∥2SV = (
α

2
+ β)ḟ 2 + 2βf 2ϕ̇2. (B.16)

The optimization (B.11) becomes:

argmin
f,ϕ,z̃,a

1

2

∫ 1

0

∫
M

(
α

2
+ β)(f 2

∣∣ ˙̃z∣∣2 + ḟ 2) + 2βf 2ϕ̇2 dAdt

s.t. ω(t) = u(t)/
√
a(t) =

√
f(t)/a(t)r̂Tx [R(n̂, ϕ(t))]T dr

ϕ(0) = ϕ0, ϕ(1) = ϕ1, z̃(0) = z̃0, z̃(1) = z̃1

f(0) = f 0, f(1) = f 1, a(0) = a0, a(1) = a1

[d− iω(t)] z̃(t) = 0, |z̃(t)| = 1.

(B.17)

Similarly to what we discussed in the main text, we replace the last two con-
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straints by z̃ ∈ Optω, leading to the following well-defined optimization problem:

argmin
f,ϕ,z̃,a

1

2

∫ 1

0

∫
M

(
α

2
+ β)(f 2

∣∣ ˙̃z∣∣2 + ḟ 2) + 2βf 2ϕ̇2 dA dt

s.t. z̃ ∈ Optω,

Optω := argmin
z̃

∫
M

[
∥(d− iω(t)) z̃∥2 +

(
|z̃|2 − 1

)2]
dA,

(B.18)

with the same boundary conditions.

We solve it by a penalty method as:

argmin
f,ϕ,z̃,a

1

2

∫ 1

0

∫
M

(
α

2
+ β)(f 2

∣∣ ˙̃z∣∣2 + ḟ 2) + 2βf 2ϕ̇2 dA dt

+c1

∫ 1

0

∫
M

∥(d− iω) z̃∥2 +
(
|z̃|2 − 1

)2
dA dt,

(B.19)

with boundary conditions:

ϕ(0) = ϕ0, ϕ(1) = ϕ1, θ(0) = θ0, θ(1) = θ1 (B.20)

f(0) = f 0, f(1) = f 1, a(0) = a0, a(1) = a1, (B.21)

(B.22)

and

ω =
√
f(t)/a(t)r̂Tx [R(n̂, ϕ(t))]T dr. (B.23)

We further approximate this problem by replacing f 2 by its average over time:

argmin
f,ϕ,z̃,a

1

2

∫
M

(
(f 0)2 + (f 1)2

2

∫ 1

0

(α
2
+ β

) ∣∣ ˙̃z∣∣2 + 2βϕ̇2dt

)
dA

+

(
α

4
+
β

2

)∫
M

∫ 1

0

ḟ 2 dt dA

+ c1

∫
M

∫ 1

0

∥(d− iω) z̃∥2 +
(
|z̃|2 − 1

)2
dt dA.

(B.24)

This indicates that

f(t) = (1− t)f 0 + tf 1.
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The optimal ϕ should satisfy

βϕ̈ = −c1(d− iω)z̃
(
iz̃

dω

dϕ

)
= −c1(d− iω)z̃ (iz̃ωperp) ,

(B.25)

where

ωperp(t) =
√
f(t)/a(t)r̂Tx

[
R
(
n̂, ϕ(t) +

π

2

)]T
dr. (B.26)

Away from the singularities, z̃ and ω are almost compatible, that is (d − iω)z̃ ≈ 0.

Therefore we have ϕ̈ = 0, which indicates

ϕ(t) = (1− t)ϕ0 + tϕ1. (B.27)

Near the singularities, z̃ is close to zero. In this case, the wrinkles displacement

(= aℜ(z̃)n̂ ≈ 0) is negligible. The value of ϕ does not matter. Therefore, we can

extend Equation (B.27) for the whole surface. We further assume that amplitude

varies slowly temporally, so that it can be approximated using the linear relation,

a(t) = (1− t)a0 + ta1. (B.28)

We can get the final remaining z̃ by solving the optimization problem:

argmin
z̃

∫
M

(
gbd

∫ 1

0

∣∣ ˙̃z∣∣2 dt) dA

+ c

∫
M

∫ 1

0

∥(d− iω(t)) z̃∥2 +
(
|z̃|2 − 1

)2
dtdA,

(B.29)

where

c = c1/

(
α

4
+
β

2

)
, gbd =

(f 0)2 + (f 1)2

2
(B.30)

To sum up, in the smooth case, the approximated geodesic can be computed

as follows:

a(t) = (1− t)a0 + ta1 (B.31)

f(t) = (1− t)f 0 + tf 1 = (1− t)a0∥ω0∥2I−1 + ta1∥ω1∥2I−1 (B.32)

ϕ(t) = (1− t)ϕ0 + tϕ1 (B.33)

ω(t) =
√
f(t)/a(t)r̂Tx [R(n̂, ϕ(t))]T dr, (B.34)
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and z̃ is the optimal solution for Equation (B.29) with constant penalty coefficient

c. For the regions with singularities, where a0|P = 0, or a1|P = 0, ϕ(t) is not well

defined. In that case, we simply linearly interpolate ω(t) as (1− t)ω0 + tω1.

B.1.3 Discrete Geodesics

In the previous section, we provide the formula to compute the smooth geodesic

between two complex fields z0 and z1. In this section, we provide the corresponding

discretization w.r.t. two CWF s: (ω0, a0, z̃0) and (ω1, a1, z̃1), where ω0,1 are the edge-

discretized one-forms, while a0,1 and z̃0,1 are defined per-vertex.

We start with some notation. Let Nj be the set of all triangle faces incident

to vertex vj, and Njk the faces incident to edge ejk. Notice that Equation (B.31) can

be directly discretized for per-vertex amplitude as

atj = (1− t)a0j + ta1j . (B.35)

What remains is to discuss the discretization of Equation (B.34) for ω, and the

corresponding optimization (B.29) for z̃.

ϕijk,ℓ

n̂ijk

r̂x

vijk,ℓ

Discrete f We first discuss the discretization of f . From Equa-

tion (B.13), we know that in the smooth setting, f represents the

squared magnitude of the tangential vector v =
√
adrI−1ω. We

discretize it as a scalar per face-vertex; that is, for each face fjkℓ

and each vertex vm,m ∈ {j, k, ℓ}, we assign an fjkℓ,m. More specifically, for each

vertex vm,m ∈ {j, k, ℓ}, we discretize v as follows:

vjkℓ,m =
√
amujkℓ,m (B.36)

where ujkℓ,m can be computed according to Equation (B.51) in Section B.3. Then we

set

fjkℓ,m = ∥vjkℓ,m∥2 = am ∥ujkℓ,m∥2 . (B.37)
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Since a0m, a
1
, , u

0
jkℓ,m, and u1

jkℓ,m are given by the boundary conditions, we conclude

that

f t
jkℓ,m = (1− t)a0m

∥∥u0
jkℓ,m

∥∥2 + ta1m
∥∥u1

jkℓ,m

∥∥2 , (B.38)

and that for each vertex vj,

(gbd)j =

(
(f 0)2 + (f 1)2

2

)
j

(B.39)

=
1

2|Nj|
∑

Fjkℓ∈Nj

(
a0j
∥∥u0

jkℓ,j

∥∥2)2 + (a1j ∥∥u1
jkℓ,j

∥∥2)2 . (B.40)

Discrete ω formula. Our next step is to discretize Equation (B.34). Consider

an edge ejk. Consider one of its incident faces Fjkℓ and one of its endpoints vm,

m ∈ {j, k}. We can get the corresponding atm and f t
jkℓ,m according to Equations (B.35)

and (B.38) respectively. We choose

rx = ejk := vk − vj (B.41)

r̂x = rx/∥rx∥, (B.42)

and ϕjkℓ,m is the corresponding angle between r̂x and vjkℓ,m, we have

ϕt
jkℓ,m = (1− t)ϕ0

jkℓ,m + tϕ1
jkℓ,m. (B.43)

The one-form contribution from vertex vm on face Fjkℓ, is then computed as

ωt
jkℓ,m =

√
f t
jkℓ,m/a

t
mê

T
jk

[
R(n̂jkℓ, ϕ

t
jkℓ,m)

]T
ejk (B.44)

= ∥ejk∥
√
f t
jkℓ,m/a

t
m cos

(
ϕt
jkℓ,m

)
. (B.45)

Therefore

ωt
jk =

∥vk − vj∥
2|Njk|

∑
fjkℓ∈Njk

∑
m∈{j,k}

√
f t
jkℓ,m/a

t
m cos

(
ϕt
jkℓ,m

)
. (B.46)
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Discrete z̃ formula. The final step is to discretize Equation (B.29). In the main

text, we have already provided the discretization of |(d− iω)z̃| and (|z̃|2 − 1)
2
. Addi-

tionally, Equation (B.40) offers the discretization of gbd. The only remaining part of

Equation (B.29) is ˙̃z, which can be directly discretized using standard finite difference:

˙̃zt
j =

z̃t+δt
j − z̃t

j

δt
. (B.47)

Optimizing Equation (B.29) with respect to
{
z̃n·δt
j = xn·δtj + iyn·δtj

}n
j
yields the final

optimal z̃.

B.2 Loop Subdivision Rules for 1-forms

We modified the Loop scheme provided in Wang et al. (2006); de Goes et al.

(2016a), such that the corresponding mask for the one-form is still consistent with

the boundary fixed Loop scheme. We listed the changes to the boundary rules in

Figure B.1. For the interior rules, we refer the reader to the supplementary material

provided by de Goes et al. (2016a).

B.3 Contangent Vector Computation

In this section, we provide the formula of acting the cotangent vector ω at

a point P (in the tangent space) on a tangent direction d. Setting P = P0 and

d = P ∗
1 − P0 will give us the corresponding formual mentioned in the main text.

To begin with, consider a face f with vertices v0,v1 and v2, and edge 1-forms

ω01, ω12, and ω20. The barycentric coordinates of P is (α0, α1, α2):

P = α0v0 + α1v1 + α2v2 (B.48)

For any tangent direction d,

ω(P )(d) = vtan(P ) · d ≈
2∑

i=0

αi(vi · d) (B.49)
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Figure B.1: Loop subdivision rules for boundary 1-forms

where vtan is the corresponding tangent gradient of ω. Here we approximate vtan by

linearly blending from the corresponding values at triangle corners (denoted as vi).

The tangential gradient v0 of vertex v0 should satisfy

v0 · (v1 − v0) = ω01

v0 · (v2 − v0) = −ω20

(B.50)

Expressing v0 in the tangential plane basis gives us:

v0 = x(v1 − v0) + y(v2 − v0), (B.51)

where [
x
y

]
=

[
∥v1 − v0∥2 (v1 − v0) · (v2 − v0)

(v1 − v0) · (v2 − v0) ∥v2 − v0∥2
]−1 [

ω01

−ω20

]
(B.52)

v1 and v2 can be computed in a similar manner.
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Models Figures |V| |F| |V′| |F′| #iter TCHOL (s) Ttol (s)
torus global rotation B.10 400 800 400K 800K 243 123.30 127.13
cylinder local rotation B.2 639 1222 246K 491K 129 30.61 31.92
bunny global rotation 3.10 502 1000 512K 1.0M 381 254.53 263.09
bunny local rotation 3.7 502 1000 512K 1.0M 127 89.36 92.31
fertility global enlargement 3.5 494 1000 511K 1.0M 298 178.91 185.74
fertility local enlargement 3.6 494 1000 511K 1.0M 94 63.52 65.69
pantasma local enlargement B.9 850 1696 868K 1.7M 109 172.01 176.05
spot composite editing 3.19 502 1000 512K 1.0M 154 82.19 85.65
spot user designed editing B.5 502 1000 512K 1.0M 212 123.21 127.92
user designed face B.4 1026 1999 1.0M 2.0M 151 334.46 341.79
user designed hand B.3 1012 2000 1.0M 2.0M 94 173.12 177.69
user designed dress B.6 1333 2586 1.5M 3.0M 144 324.59 333.65
pants B.8 1677 3304 1.6M 3.3M 262 710.14 728.63
dress B.7 1525 2950 1.5M 3.0M 96 303.08 310.65
Average - 820 1617 802K 1.6M 188 225.17 231.62

Table B.1: The time and convergence information for all the examples showing in this
chapter. |V| and |F| are the number of vertices and faces of the base coarse mesh, and
|V′| and |F′| are the corresponding values of the upsampled wrinkled mesh, where 4
or 5 levels of upsampling are used. The major part of time (∼90%) is costed by the
CHOLMOD linear solve within the Newton’s method. Note that the efficiency can
be improved by fine-tuning the number of frames we use. See Appendix B.7.1 for
more discussion.

B.4 Timing

We report the timing of our interpolation approach in Table B.1. We ran our

experiments on a desktop with a 8-core Intel Core i9-9900K CPU, clocked at 3.6 GHz

and 64 GB of memory. We use 50 frames in total and linear interpolants inbetween to

get a final set of 200 frames used for animation generation. To get optimized results,

we let the Newton solver run until the gradient L2-norm is smaller than 10−6.

B.5 Additional Editing Examples

We used our wrinkle editing tools to create several additional examples of

smooth interpolation of wrinkles on complex surfaces. Please see the supplemental

video for animations of these examples. Figure B.2 shows the result of locally rotating

a small user-specified patch of the circular wave on the cylinder by ninety degrees.
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Figure B.3 shows interpolation between two wrinkle patterns on a hand, where the

second keyframe was created from the first by rotating the left red patch 45 degrees

and halving the wrinkle frequency and doubling the amplitude in the right red patch.

In Figure B.4, we generate the target frame by rotating the wrinkles on the cheek

(the left red patch) by 90 degrees, increasing the wrinkle frequency by 1.5 times in the

middle red patch beneath the mouth, and doubling the frequency on the bottom red

patch. Figure B.5 shows an interpolation of two user-designed waves on Spot, where

different red patches have different rotation angles. Figure B.6 shows the possibility

to design and interpolate wrinkles on cloth. All of these examples show complicated

wrinkle shapes with many singularities (the blue dots in the amplitude figures). We

successfully get local smooth wrinkle evolution on all of these user-designed examples.

Editing Simulation Results Our tools can be used to edit wrinkles originally

computed via physical simulation. We show two examples: Chen et al. (2021b)’s

dress and pants. For the dress (Figure B.7), we set the second keyframe by uniformly

enlarging the wrinkle frequency and at the same time halving the wrinkle amplitude

to mimic a change in cloth thickness. For the pants (Figure B.8), we change the

frequency on the two legs differently, by enlarging the frequency in the middle of the

left leg and shrinking the frequency in the middle of the right leg. Again we changed

the amplitude to keep ∥a · ω∥ constant. We find that our approach mimic wrinkle

motion reasonably well.

B.6 Extra Comparison Examples

Figures B.9 and B.10 show extra comparisons between our approach and al-

ternative keyframe interpolation methods.
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B.7 Ablation Study

In this section we study different choices for the number of guide frames N ′

(with N = 200 fixed), and solver penalty c.

B.7.1 Number of Guide Frames

In this section, we show the results of different choices of number of guide

frames N ′, where we fix the penalty coefficient to 103gave. In Figures B.11, B.12, B.13,

we show the results of wrinkles, amplitude and phase patterns respectively for dif-

ferent number of frames, where N ′ = 1 implies that we directly linearly interpolate

keyframes. We find that as we increase the number of frames, the final interpolated

results turn to converge. In particular, the differences between N ′ = 25, 50, 100 and

200 are subtle, especially for the last three. (You can see subtle differences between

N ′ = 25 and the others at t = 0.5 and t = 0.875.)

B.7.2 Penalty Coefficient

As we discussed in the main text, when actually solving for the geodesic be-

tween two CWF s, we use a penalty c = 103gave to control the balance between tempo-

ral coherence and compatibility, where the later affects the semantic meaning of the

final upsampled wrinkled surface. In Figures B.14, B.15, we show different choices of

c with 50 frames. If c is too small, for example c = 10gave, the kinetic term dominates

the optimization, and the end result has bad compatibility. The corresponding final

wrinkled surface has lots of unexpected singularities, with undesired aliased visual

artifacts. On the other hand, if c is too large, for example c = 105gave, the com-

patibility term and unit term dominate the optimization, and temporal incoherence

will not be penalized. This leads to spatially appealing, but temporally incoherent,

wrinkle sequences. For the values in between, the smaller the c, the more “local”

patches of rotating regions we will have. At the same time, Ecompat is a quadratic

convex term, while Eunit is a quartic, non-convex term. Increasing c will increase the
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impact of these two terms. We found that it will slow down the optimization, then

speed it up (see the first column in Figure B.14). How to find the best choice for c

for each example to achieve the best trade-off between animation quality (spatial and

temporal) and solving speed needs further exploration, and we treat this as future

work.
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Rotate 90 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.2: Local rotation of an axial wrinkle pattern on a cylinder. The two
keyframes are given in the left/right side; the wrinkle frequency has been rotated
by ninety degrees in the red region of the second keyframe. The corresponding wrin-
kle animation is given in the Interpolation Results video in the supplementary
materials near 00:20-00:37.
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0.5 × frequency

2 × amplitude

rotate 45 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.3: CWF interpolation of two wrinkle patterns on the hand. Please check
the Interpolation Results video in the supplementary materials for more details
(timestamp 03:13-03:29).
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Rotate 90 degrees

1.5 × frequency

2 × amplitude

2 × frequencyt=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.4: CWF interpolation of two wrinkle patterns on the face. Please check
the Interpolation Results video in the supplementary materials for more details
(timestamp 02:56–03:12).
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rotate 30 degrees

rotate 45 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.5: CWF interpolation of two wrinkle patterns on Spot the cow. Please
refer to the Interpolation Results video in the supplementary materials for the
corresponding wrinkle animation (timestamp 02:38-02:55).
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2 × frequency

rotate 45 degrees

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.6: CWF interpolation of two wrinkle patterns on the dress. One can easily
see how the wrinkles and the singularities move in the Interpolation Results video
of the supplementary materials (timestamp 03:30-03:46).
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75s t=0.875 t=1

Figure B.7: We uniformly double the wrinkle frequency and halve the amplitude on
the dress examples from Chen et al. (2021b), emulating replacing the cloth with a
thinner material. Please check the Interpolation Results video in the supplemen-
tary materials at 03:47-04:03 for the corresponding wrinkle animation.
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2 × frequency

0.5 × amplitude

0.5 × frequency

02 × amplitude

t=0 t=1

Edited Region Interface Region Unchanged Region

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.8: CWF interpolation of two wrinkle patterns on the pants, where the initial
frames are generated using the code provided by Chen et al. (2021b). Please check
the Interpolation Results video in supplementary materials at 04:04-04:21 for the
corresponding wrinkle animation.
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5 × frequency

Ours

Linear

Chen et al.

Knöppel et al.

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.9: The results of enlarging a local patch of the phantasma model (see
the first row for details). You can see clear amplitude artifacts when using direct
linear interpolation, and strange phase patterns when using the method proposed
by Chen et al. (2021b). Although the method of Knöppel et al. (2015) produces
beautiful static phase patterns, it suffers from temporal incoherence. Similar temporal
incoherence can be seen in Chen et al. (2021b). These coherence issues can be better
visualize in the main supplementary video (at 04:05-04:27) and in the Comparisons
supplementary video (at 01:57-02:58).
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Ours

Linear

Chen et al.

Knöppel et al.

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.10: The results of rotating wrinkles on a torus by ninety degrees. You
can see clear amplitude artifacts when using direct linear interpolation. Although in
this example Chen et al. (2021b) and Knöppel et al. (2015) produce beautiful static
phase patterns with no singularities, the corresponding results suffer from temporal
incoherence. These coherence issues can be seen in the main supplementary video at
02:50-03:44 and in the Comparisons supplementary video at 00:05-00:59.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1[N ′, Tcost]

[1, 0 s]

[10, 49.11 s]

[25, 252.63 s]

[50, 426.39 s]

[100, 1087.90 s]

[200, 2485.36 s]

Figure B.11: Interpolation of rotating wrinkle patterns on the phantasma model by
ninety degrees, where [•, •] are the number of guide frames, and the computation
time (in seconds), respectively. Notice that the differences between N ′ = 25, 50, 100
and 200 are subtle. You can refer to the Ablation Experiments video in the
supplementary materials (00:14-00:31) for details.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1[N ′, Tcost]

[1, 0 s]

[10, 49.11 s]

[25, 252.63 s]

[50, 426.39 s]

[100, 1087.90 s]

[200, 2485.36 s]

Figure B.12: The corresponding amplitude patterns of the example in Figure B.11.
Again, please refer to the Ablation Experiments video in the supplementary ma-
terials (00:14-00:31) for details.
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t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1[N ′, Tcost]

[1, 0 s]

[10, 49.11 s]

[25, 252.63 s]

[50, 426.39 s]

[100, 1087.90 s]

[200, 2485.36 s]

Figure B.13: The corresponding phase patterns of the example in Figure B.11. Again,
please refer to the Ablation Experiments video in the supplementary materials
(00:14-00:31) for details.
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5 × frequency

[c/gave, Tcost]

[10, 15.74 s]

[102, 83.39 s]

[103, 92.31 s]

[104, 176.22 s]

[105, 130.99 s]

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.14: CWF interpolation of two wrinkle patterns on the Stanford bunny
model, where the target wrinkles are from locally rotating the corresponding patch of
the first keyframe by ninety degrees. Tcost is the time cost of the interpolation solve.
Please refer to the Ablation Experiments video in the supplementary materials at
timestamp 00:44-01:07 for details.
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[c/gave, Tcost]

[10, 15.74 s]

[102, 83.39 s]

[103, 92.31 s]

[104, 176.22 s]

[105, 130.99 s]

t=0 t=0.125 t=0.25 t=0.375 t=0.5 t=0.625 t=0.75 t=0.875 t=1

Figure B.15: The corresponding amplitude (odd rows) and phase (even rows) patterns
of the example in Figure B.14. Please refer to the Ablation Experiments video in
the supplementary materials at timestamp 00:44-01:07 for details.
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Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chen-

tanez, Miles Macklin, and Chris Wojtan. Water surface wavelets. ACM Trans.

Graph., 37(4), jul 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201336. URL

https://doi.org/10.1145/3197517.3201336.

Ning Jin, Wenlong Lu, Zhenglin Geng, and Ronald P. Fedkiw. Inequality

cloth. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on

Computer Animation, SCA ’17, New York, NY, USA, 2017. Association for

Computing Machinery. ISBN 9781450350914. doi: 10.1145/3099564.3099568.

URL https://doi.org/10.1145/3099564.3099568.

Tao Ju and Tushar Udeshi. Intersection-free contouring on an octree grid.

Pacific Graphics Poster, 01 2006.

232

https://doi.org/10.1145/2714572
https://doi.org/10.1145/3072959.3073678
https://doi.org/10.1145/3197517.3201336
https://doi.org/10.1145/3099564.3099568


Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of

hermite data. ACM Trans. Graph., 21(3):339–346, jul 2002. ISSN 0730-0301.

Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover - surface

parameterization using branched coverings. Comput. Graph. Forum, 26:375–

384, 09 2007. doi: 10.1111/j.1467-8659.2007.01060.x.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. Simulating knitted

cloth at the yarn level. In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08,

New York, NY, USA, 2008. Association for Computing Machinery. ISBN

9781450301121. doi: 10.1145/1399504.1360664. URL https://doi.org/10.

1145/1399504.1360664.

Tero Karras. Maximizing parallelism in the construction of bvhs, octrees, and

k-d trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Con-

ference on High-Performance Graphics, EGGH-HPG’12, page 33–37, Goslar,

DEU, 2012. Eurographics Association. ISBN 9783905674415.

Ladislav Kavan, Dan Gerszewski, Adam Bargteil, and Peter-Pike Sloan. Physics-

inspired upsampling for cloth simulation in games. ACM Trans. Graph., 30:

93, 07 2011. doi: 10.1145/2010324.1964988.

Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra. Bigsur: Large-

scale structured urban reconstruction. ACM Trans. Graph., 36(6), nov 2017.

ISSN 0730-0301.

Dawar Khan, Alexander Plopski, Yuichiro Fujimoto, Masayuki Kanbara, Gul

Jabeen, Yongjie Jessica Zhang, Xiaopeng Zhang, and Hirokazu Kato. Surface

remeshing: A systematic literature review of methods and research directions.

IEEE Transactions on Visualization and Computer Graphics, 28(3):1680–1713,

2022.

233

https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1399504.1360664


Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille,

and James F. O’Brien. Near-exhaustive precomputation of secondary cloth

effects. ACM Trans. Graph., 32(4), July 2013. ISSN 0730-0301. doi: 10.1145/

2461912.2462020. URL https://doi.org/10.1145/2461912.2462020.
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